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ABSTRACT

This research used Huygens-Fresnel wave optics computer simulations to

Investigate the effects of high tubulence strength and inner scale on the

normalized irradiance variance and coherence length of electromagnetic waves

proa throunh a turbulent atmosphere. These investigations developed

several guidefiri. ,or tdlty of propagation simulations employing a numerical,

split-step, Huygens-r ie sr. method, end within these guidelines, consilered five

types of turbulence spectrum inner scale: (1) zero inner scale, (2) Gaussian inner

scale, (3) Hill's and (4) Frohlc•h's viscous-convective enhancent inner scales,

an (5) turtlence spectrum truncation from the dic mte grid representation. The

simulation results showed that the normMlzed iradiance variance generally

decreased (-30%) below the zero Inner scale values in the Rytov regime with

increasing inner scale size, but increasedmootocaly in the u tion regimei

and agreed within 2% of the Rylov-TatarsW predictions at low tubulence strongths.

The E-fletd coherence lenth in a spatially corn-oed beam. with either spherical or

plane wave divergence nd zero hoe scale, followed the Rytov-Tatarski-Fried

pnred iion in the Rytov regime. but depa from th thoy in the atration

regime. Increasing Inner scale size modified thi finite beam behavior by raising
Accesko• For

the coherence lnt (up to -50%) in t s a tion rime.NS CRA&!
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1. INTRODUCTION

Turbulencein a strtiie &Au causes ranom inhomogenreftes in

temperature and the ndex of refraction ftht SCatte ad diffract a wave

propagatin though such a medium. Analytcal perturbation tschiqus

develope over the paet three decades cannot account for the variations

observed experimentalY in fth amplitude and Phane distibution of a

propagating wave when turbulenc leves am high mdL~or proaato paths are

long. Over the Past 01MeYOM ars.numetca wave optics codes based on the

Huygens-Fresne pfrinciple have been develope to address, tese skituaos.

This research extende these codes Io iclud W~ne scale in the spectrum of

refactive index flcutosand to exernine the coherence leghand the

effects of inner scale in th" Rylov regime (low Uxbulenc strenogths andforsh1

Propagation path) and in the saturation iem (high kobulence strengts

andior long propgto paPths)

AS a "is step, extensive anlyIs andI tesn developed guidlies~ for

validty of computeor simulationsmpoyng tviugers-Frene p apag-oon over

multiple S"ep (spl-ste metod) These gsielnres include.



"* For an NMN gMi end ropagti1 ditanc L. Owe grid elemnt size soul~d
be Ax - v'LTR.

"* The maximnum trbulenc strengths C," 0-d propagation distances L for
spherical wae" propagation with an Nx:N grd soul~d satisfy

0' 0. 1 N, *where~ 0.497 C: k"'e 1"".

"* Equivalently, the E-fleid cotherence length r. shoul nsatsy
r.2 2.5 A~x. where r. represents Frid' cheeno lengt (for

spteri* Waves),

"* Use aŽ30 phase scen/ lap or ea~i -pro NtOn

"* Use -Ž30 propagation reaftzations to get representative satistic.

"* Phase screens require low spatial freqmeny Cooredtion to gain 5%
aJccuracy in normlalied Wradiunc vartance and as much as 30% in
coherence WVngt

"* Half width at half maximumn of I*e atvmospheric MW end an iterative fit r,,
Provide the MOMt stable powneel*W"Wmn of Owe E-fled coherence lengt

* Tetal s~ns o alasig inkdea ~~al Wrd ienece pattern, a boxed
perimeter to the Onmadnce pattern. &Wd peekbrg of tie ewryW uwmd the
cente of tohe fomputa--on gm.d

These tnvesbgaons alo exwAmned four dvioas of EAWel source funelon and

refined the methods of nonrmalied Wraenc vaurmc &Wd E-feld cohrence

lenth calculaton

These simulatonsx ncro a"e ty ypes or bmbuw"nc speoftm WNne

scale (1) zero ame scale. (2) Gmausian inne sowe. (3) W4s wand (4) Fretlid's

vhscoqs-convechve enhencemen inne scalet an (5) tiaurence "Meuum

2



truncation from the discrete grid representation. For the more physically

realistic viscous-convoctive enhancement inner scale, the computer simulations

provided the following results:

*The Hil and Frehlich paraemerzation performed almost identially,
givng less than 3% dfference In normalized irradiance variance over the
Rytov and saturation regimes.

*In the Rytov regime, the normalized irradiance variance for an
approximately spherically diverging beam increased (-30%) and then
decreased (-30%) compared to the zero inner scale value as the Inner
scale size increased, and the E-eld coherence lengt r. decreased
slightly (-5%) compared to the zero inner scale coherence length.

*In fth saturation regime, increasing inner scale size gave mnoncay
increasing normalized irradiance variance and increased the coherence
length (up to -'50%) compared to the zero inner scale case.

The effect of the Gaussia inner scale on normalized lirradiance variance and

coherence length was alo =-InveSswiae.

These investogations examined the behavior of the E-fleld coherence

length for E4helds (beams) OWa *wer constrained in lateral extent to the grid

Wie but Whose divergence appr~oxims, tha of spherical waves, plane waves,

and intermediate beam waves. The compute simuslatons showed that:

"* For the Rytov regime. fth spherical andI plan wae" case gave
coherence length within 5% of fth Rytov-Tataraki-Fried predictions.

"* In the saturation regime. Ow E-fleld coherenc, lengths flor the spheical
wave approximabon decreased -25% below thetheory, whilefth
coherence lengfts for fth plan wae a~pw~proxVimakXo varied withi
.5" .15% Of fte theoy

3



* The E-field coherence lengths for the beam wave cases were spaced
between the spherical and plane wave values for the Rytov regime, but
increased toward the spherical wave values in the saturation regime.

The spatially confined beams used in these simulations showed a departure in

behavior of the E-field coherence length in the saturation regime from the

predictions of first order perturbation theory.

The organization of this dissertation generally follows the preceding

summary of major points. Chapter II summarizes the theory of wave optics and

the impler aentation of the Huygens-Fresnel propagation in a computer

simulation. It then provides an overview of the Rytov-Tatarski theory for the

effect of atmospheric turbulence, including inner scale, on the normalized

irradiance variance and E-field coherence length as applied to spherical wave

propagation. Chapter III discusses the detailed choices of physical and

simulation parameters and develops the guidelines to ensure validity of the

simulation. Chapter IV presents the computer simulation results, first for the

inner scale effects on normalized irradiance variance, then for the behavior of

the E-field coherence length in the Rytov and saturation regimes, and for the

effect of inner scale on coherence length.

4



II. BACKGROUND

A. CHAPTER OVERVIEW

This chapter summarizes first the theory of electromagnetic wave

propagation and the Huygens-Fresnel solution to the scalar wave equation and

recasts the Huygens-Fresnel solution into a form utilizing fast Fourier

transforms easily implemented in a computer simulation. It then summarizes

the Rytov-Tatarski solution to the scalar wave equation which used first order

perturbation theory and statistical techniques to describe the spatial variations

of "le irradiance of an electromagnetic wave propagated through a turbulent

medium. The Kolmogorov spectrum of refractive index fluctuations is

introduced as well as five types of inner scale which modify the high spatial

frequency portion of this spectrum. The chapter concludes by describing

Fried's method for parameterizing the coherence length of the E-field for a

spherically-diverging wave propagating through a turbulent medium.

B. WAVE PROPAGATION

Maxwell's equations describe of the propagation of electromagnetic

waves through a turbulent medium. Assuming a locally homogeneous,

isotropic, and linear medium,

5



-- •7 T 7 77

i v- . o,(2)

Vx Ot (3)
at

Vx atd) (4)

where hatted ()quiarfJbe rersn vok" At OWe freIqjuenC~ies- and field

strengths of Interest. the modlim may be assumed to have zero local free

charge density p and zer (or noglgibe) cc nductiv••y m w Loe beans i the

atmosphere satisfy these c+ndions Expmndkg the left-hand side of Eq. (1)

and comcbMnn the curt of Eq (3) and t time dertvawe of Eq. (4) gives a

vector wave equation for the E-fleld

V'V V((. V In) -. (6)

The mkidl term represents depo-tzai of the E field and is ne " sia.

forI propagton trough S turbulntMosM (TafterW. 1981 . Lawence wnd

Strohbehn, 1970). Nglectng the mrkni term smplifes the voclr wae

eqaton to

v't- 0.0 (6)

6~i
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The Frsnel-Kichoff diffraction Own provides an OPP SCal

solution to this vector wave equation. Followin Hech (1967). Ove sphierical

wave solubon is

S- Ept , . (7)
C

where E, is a constart and k w 2NA UsMg Eq- (7) wth fe timedeipnden

factored out, Oe Krcoff itegral theorim boome

E,.- •1 . ±-VE(C) -d f, - E(C) d) . ,

which must be *valuated over a surface S endo"ig VI fRid point P. F"gur

(1) Mlustrates e reiaonship beween me disances P end n. if Vw wavelength

X C. q , Eq (8) reduces lo me Fren.-KJrchoff dlfiraion formnia

where K(O) represents the obkpmity factor.

Integratng Eq. (9) over me half sphere S (uhown in Fig. (1)) as the

radius approaces WW"nit. the elecftr feld ampktue is Opp(r@ Mta--'e only over a

finite aperture are A of the !hwemsper'e fiat side. Then Eq. (9) reduc to the

more famliaw Hgens-FresneO expression

7



ftM I FMeeu-JIý diffaCti g9omey Show"~ mtatinhhi behw
source. sperlu A. surfmc S. wWd field poirt P.

A A~

The camplim apertur fuNclo Eý cordef Me source sphericl wave factor,

*W(AA. The E-flsl at a point P is a fUncton of Vve E4fel over a finte

apr~eA.



The Huygens-Fro"nel formulation, Eq. (10), serves as the basis for

calculating the propagation of a wave through turbulence. This formula can

now be cast into a form easily implemented in a propagation computer

simulation. Applying the Cartesian coordinate system of Fig. (2), the Huygens-

Fresnel principle becomes,

E(?z - ff. E(A,O) *v7"" 1 -J K(O) dM. ()Vz" + It - P1!

Yv -p

P

x

z

Aperture

Figure 2 Propagation coordinate system showing relations between the
aperture variables and the field variables.
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P represents the position vector of te o t point P In the x-y plane and

W rersents the position vector of Ot radit point In the aperture plane.

The paraxial approximation assumes that

1i ýCz ad I zo, (12)

where z measures the longitudinal distance of the point P from the aperture.

Consequently, the obliquty factor K(G)=(l+coeO)12 becomes approximately I

and the denominator of ft integrand Is approxinmately z Aldman,1968),

E(,- f E(, M. 13)

Following Roberts (1986), the Fresnel approximatio assunes that the lateral

displacement between the radiating point and the o point

I t- A I << z. Then, usin the lowest order tems for the seres expansion

of the complex exponen8ias argument, Eq. (13) becomes

E(t.f c E(,0) It z

---$.fE@0) - (14)

Az

10 ep'A-

10



The factor exp(-2xizM) represents the change In phase of the optical wave from

the center of the aperture plane to the plane of the observation point P. It

applies to the whole E-fleld and depends only on the propagation distance z. It

does not affect the phase variation across the E-fleld nor the amplitude of the

E-field, and will be dropped in the following expressions for simplicity.

Equation (14) can be recast into a form utilizing Fourier transforms.

Expanding the aperture field E(AO) in Eq. (14) using the Fourier transform

dentity

E(AO) - f of eOs/ f dol e"l,'41' E(01I,0), (8

Eq. (14) becomes

E(f,z). fdo [ fd e""* fd~' e E(� .EA',O)J)

(Note: these equations use spatial frequency I (m") instead of spatial

wavenumber i = 2 x I (rad/m) because the discrete Fourier transform

computer subroutines used in these Investigations are written with spatial

frequency I.) Making the change of variables A a _ - gives

11



E(?,Z) 1 f(-d') [fde . -' f' e-.-w"f#E(A'.0) .•r' ,

-- fd 0419M fdp' V-"O' E(A',O) [ f.' ,,-""Raw "
Iz

The last integration over d?/ is the Fourier transform of a Gaussian funcdion,

f /' *-Raw" #"itI' - I hz I.lP (18)

Substituting j for 41, the E-fieWd of Eq. (17) becomes

E(P',z) - fd emku e"'P'al fo E(A,0) #-"tF*. (19)

Equation (19) may be symbolically written as

E(fz) - FTJ *-DuLzlI FT[E((,0)]], (20)

where FT and IFT represent the two-dimensional Fourier transform and Inverse

Fourier transform, respectively. Equation (20) expresses the E-fleld at a

propagation distance z In terms of Fourier transforms of the E-field at z = 0

represented In a Cartesian coordinate system. This form of the Huygens-

Fresnel principle Is useful for a simulation that subdivides the propagation path

Into a sequence of short Fresnel propagation steps.

12



C. EFFECTS OF TURBULENCE ON THE PROPAGATED WAVE

1. Ifedance Variance and Inner Scale

The next step In modeling the propagation of an E-field through a

turbulent medium requires a statistical characterization of the turbulence and its

effect on the spatial statistics of the propagating wave. To begin understanding

the effect of turbulence upon the wave, consider a spherical wave incident upon

a medium with randomly varying index of refraction, as shown in Fig. (3). For

small variations in the Index of refraction about the mean value, scattering

occurs predominantly in the forward direction (Tatarski, 1961). The regions of

index of refraction fluctuation accelelatestard portions of the wavefront over

short propagation distances and cause variations in phase across the reference

spherical wavefront. Subsequent diffraction and interference then create

variations in irradiance across the wavefront. Compared to propagation through

zero turbulence (Fig. (4)), a spherically diverging beam now exhibits significant

variations in phase and amplitude (irradlence) (Fig. (5)).

A statistical description of the refractive index fluctuations is

needed to calculate the E-field variations. The index of refraction, n, in air

depends upon the temperature T and pressure P (Tatarski, 1961). At visible

wavelengths,

13



noa
..* .* * '

S3 
W ave p opagating ta m edium h v i random I o ogen s

In index of retcto.

-.n O4 J .(**. (21)

The twnporsture prt in the abohr posseso sign•icnt stratiiato,
as shown In Fig. (6) (Wotm , 1994). Velocity shear between dffeent layes in

the stmo~ o Causes tublec which dhwupts the Inefc between these
laysm. mixing regions of d•W tempera*ts. The v:on 2ty futuations

genralted by to tublec at th~e int~orlc between layers gorwlly follow the

Knog•ov spectrum.
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FIpu 4 midrraiace plot fbr a spheuicaly divergng beam propagate fthough
zero turbulence.



-9 -M - ý -, ý7. I pl, 1 -1.

F~mu,6 Iradian pWo for *pheft* divglng beam propagato mrwou
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I- AA AAt .
49 4 4 -0 49 . a 0

Rpms. 6 Vertkal pofil of merl.in fte atimos"S.

*(m - %`It (22)

assuming Wsotpic O and ho mogneu babuwm a rpremiefls spatw

owwevnmber in ruaii. Temperakws is a Opa~ssiv edittve (Tater~d, 1961) in

the tmolsphereo, meaning Mehat doe not ~ Voe dy*nics of fthabsbeincs.

Thus, Owhe threeimeneion spectrum Of -WrnersU -1 ue&xations alm folows

the Kokwogoov spoedum. Since Eq. (21) relafts the Widex of rufreolo to

WOpeN-re .the spectrum of reroklve in desi buftwuOS is afst Kolmoogorov

*0.6643, (23)
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whore C, 2(z) is a constant of proportonaflty inndicating the strength of the

turbulence. in reality, this specrum only applies to an intermediate range of

wavenumbers known as the inertial subrange, shown in Fig. (7). The

boundaries at the high and low spatial wavenumbers are the inner and outer

scales, respectively, and are discussed below.

-,10-12-

O 102 t03 i

X in~ ~ Scads

F"pi. 7 Abmosphenc speckvm of refted knx fluctuations showing n•erial
subrange a ou& W and inner scles.

VMl tVil undersamndmcg of the effecr of turbulence on a

pr gatln E-01M. Tatrk (191) dernved expresnses for the statistical

pr opertis of W e. Sae. awrdi of a spherical wave

propagt~n ough a tubuierg medkiumas bloft Consider a scaler

c Wmpnm of On vecor wave equaMon Eq. (6) and ass.me a hamwic time

16



dependence for the E-field

E(I~t) - u(I) *IV. (24)

Perform the time derivatives and introduce the wavenumber k = 2xdX and the

index of refraction

n = c rVA (25)

(where c = velocity of light in vacuum, p = magnetic permeability of the

medium, e = electric permittivity of the medium ) to get the scalar wave

equation

V2u + 0 nk(f)u - 0. (26)

Expressing the index of refraction as

n(?) - 1 * ni(r), (27)

where I n,(P) I 1, and using the Rytov method of smooth perturbations that

employs u = exp('Y), F = 4o + T, + ... , and u = u, + u, + ... , the wave

"quation becomes

V25  , 2VY,.VTY +2 (?)- 0. (28)

This has a solution

TIM 0 ffn,(,,) %u(p,) exp(IkIl - frI) dV'. (29)

IP - I"I

19



Fora spherical wave

(l'l) - (-w130)

and for small wavelengths X ý, where , (the inner scale) chacerizes the

size of the smallest fluctuations in the index of refraction, the Fresnel

approximation In Catesian coordinates reduces Eq. (29) to

YQ'so( I* 1 • r")z (xI.1'A - 2zz, (O*-'W) (31)
'I (Z-Z)

The statistics of the turbulence appear in IF, and n, In terms of spectral

expansions where n, contains the hr1-ie spatial frequency spectrum

of refacti index fluctuations, Oa(C). The Rytov approximation introduces the

log amplitude fluctualion X

A (32)
Ae

where A and A awe the amplitudes of the turbulence perturbed E-field u and

the free space E-fled u,

u •A e•(33)

Then, after an extended series of manipulations (see Tatarski, 1981) that

assume local homogeneity an Isotropy, te var•ance of te log ampiude

20



fluctuation X of a spherical wave propagating over a distance L becomes

jm400k f 4dix it f J' *4,KZ) sk' 1 (3U)

where k = 2x/X. and Kc = spatial wavenumber (rad/m), which is used here

instead of spatial frequency f (1/m) to be consistent with previous work.

Assuming that the irradlance follows a log normal distribution (Tatarski, 1961),

the normalized irradiance variance is a function of the log amplitude variance

2o -, q 41 (35)

The assumption of isotropic, homogeneous turbulence gives a

Kolmogorov spectrum of refractive index fluctuations of the form

j(ic,z) = 0.033 C.2(z) K*"'1 (Tatarsil, 1981). Assuming, for computational

coenience, that this K*.l power law dependence holds over the entire range

of spatial wavenumbers K, and that the turbulence strength C.2(z) is uniform

along the path, then integration of Eq. (34) gives the log amplitude variance for

a spherical wave as

X - 0.124 Ce k0 L"'4. (3)

The normalized iradlance variance of Eq. (35) becomes

21



@Wi"u(4 I) - WOq(A0-7 04 014 L ) -1. (7

Low turbulence (small C. 2) and/or short path lengths make the exponent small

enough to apply the approximation exp(x) ow l+a, giving

IalO .497 e, 06 L"1mu (38)

where the new parameter 0.,, defined by this equation, serves as the baseline

normalized irradiance variance for comparing modifications to the spectrum of

refractive Index fluctuations. *2 also facilitates plotting normalized Irradiance

variance over a broad range of integrated turbulence strengths.

The above steps characterize the effects of the turbulent medium

upon the Irradlance statistics of a sphercal wave assuming a simple

Kolmogorov spectum of refractive Index fluctuations. Incorporating a high

spatial frequency rolloff at the inner scale, as shown in Fig. (7), modifies the

Irradiance statistics. The inner scale 0. represents the physical size where

viscosity of the medium smooths the velocity fluctuations by dissipating kinetic

energy and thermal diffusion smooths the temperature fluctuations (thus

"refractive index fluctuations), removing the turbulent character of the medium at

this scale. This smoothing causes 8 rolloff of the high spatial frequency energy

22



of the refractive Index spectrum. Fluftt, Wang, and Martin (1993) write the

three-dimenslonal Isotropic spectrum as

O(i,z)= 0.033 eC(z) ic t (39)

where F(x) represents a particular functional form of the inner scale. The

parameter ic, consists of the spatial wavenumber i (radians / meter) and the

inner scale parameter k (meters). For zero inner scale (i.e. no high spatial

frequency rolloff),

F(wO1) = 1, 0 < c < . (40)

For theoretical and computational convenience, a Gaussian rolloff inner scale is

often used (Tatarski, 1961) to represent the high spatial frequency rolloff from

viscosity

F() exP(-(.)) ,(41)

The more realistic viscous-convective enhancement inner scale advocated by

HUI (1978) and Frehlich (1992) exhibits an enhanced spectrum for the

wavenumbers slightly less than the rolloff point. Viscosity attenuates the kinetic

energy and lowers the velocity fluctuations over regions near the Inner scale

size and smaller before thermal diffusion can smooth all the temperature

fluctuations within these regions. This disparity alters the temperature and
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cofresponding Index of refraction spectra. Inner-scale-sized patches of air have

different temperatures but have little internal velocity variation. Since the

Kolmogorov spectrum is based upon the spectrum of velocity fluctuations, these

residual temperature fluctuations cause an enhancement to the Kolmogorov

spectrum around the inner scale size. At higher spatial frequencies beyond the

inner scale, thermal diffusion does smooth out these residual temperature

fluctuations and the spectrum falls off sharply.

Hill provides a plot of F(ic,,) versus %#. for the viscous-convective

enhancement, that is suitable for implementing the viscous-convective

enhancement inner scale for numerical integrations and computer simulations

(Flatt6, Wang, and Martin, 1993). Frehlich presents a similar characterization of

the viscous-convective enhancement inner scale based upon laser scintillation

measurements and provides a four parameter fit to describe this version of the

viscous-convective enhancement inner scale.

Since most numerical simulations, such as the one used here,

utilize discrete Fourier transforms, the spatial frequency grid mesh chosen for

calculations introduces a maximum spatial frequency xc established by the

Nyquist sampling criterion (discussed in Chapter I11). This limit creates a grid

cutoff inner scale at K,

il K0 (42)
0, >
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Figure (8) illustrates these five inner scales for eight Inner scale

sizes. Solid curves represent the Hill version of the viscous-convective inner

scale, dashed curves represent the Frehlich version of the viscous-convective

inner scale, and dotted curves represent Gaussian inner scales. The solid line

with the box shape represents the numerical grid cutoff inner scale at KyM =

318 rad/m for a 1024x1024 mesh. The inner scale values of 2, 3, 4, 5, 6, 7,

10, and 15 cm refer to stratospheric propagation over 200 km, assuming an

optical wavelength of 500 nm.

The outer scale L., corresponding to the spatial wavenumber

= 2%rI.,, represents the upper size limit to which the Kolmogorov spectrum

applies. For scale sizes larger than Lo (or spatial wavenumbers less than Kin),

the refractive index fluctuations level off to a finite value as K approaches zero.

Physically, such a limitation exists as the spatial wavenumbers approach zero

because the refractive index fluctuations cannot become arbitrarily large, or

equivalently, the energy represented by the spectrum must remain finite

(Tatarski, 1961). Estimates of the outer scale for the stratosphere lie in the

range of tens to hundreds of meters. However, the outer scale proves to be

much more problematic to include in the spectrum of refractive index

fluctuations because the atmosphere is anisotropic at these large sizes

(Tatarski, 1961). The Von K.rmin spectrum (Tatarski, 1961),
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which has been used to Incorporate an outer scale for some calculations, is

based upon computational convenience more than physical understanding.

Additionally the computer simulation results were compared against the Rytov-

Tatarski predictions, which were derived without an outer scale. Therefore,

these investigations did not incorporate an outer scale.

2. Abnoapheric MTF and Coherence Length

Propagation through a turbulent medium not only affects the

irradiance statistics, but also reduces the spatial coherence of the wave as

characterized by the transverse coherence length. Fried (1966, p. 1372-1379)

derived a long exposure modulation transfer function (MTF) for a spherical

wave propagating through a turbulent atmosphere and used this to

parameterize the E-field transverse coherence length, r.. Following the method

and notation of Fried (which used spatial frequency f in ( Mi )), consider the

spatial Fourier transform of the intensity of an E-field propagated through the

turbulent medium and Imaged by a thin lens

c(/) f Of ut u'(*) u()" , (44)

where u(,) represents the E-fleld in the image plane and B represents a
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normalization constant. Fried calls this the "MTF of the image-forming optical

system", assuming a unit impulse (point) Illumination and anticipating the fact

that the ensemble average of c(/), which incorporates the effects of

atmospheric turbulence, turns out to be real. Utilizing the Fourier transform

property of a thin lens,

u(I) = A f d U(9) A" (45)

where A is another normalization constant and U(9) represents the E-field in

the plane of the thin lens aperture, the MTF becomes

i(l) = A'B f dP U'(P - IR?) U(P). (46)

Expressing the E-field U(P) as the product of a zero turbulence propagation

part, W( ) , and an atmosphere-induced perturbation, V( 9),

U(9) - W(P) V(• ) W(P) 0Q(") "•(9. (47)

W(P) represents the uniformly illuminated aperture function. I(9) represents

fluctuations in the log amplitude of the E-field and +(P) represents phase

fluctuations.

Taking the ensemble average < > of Eq. (46) over many

realizations and substituting in Eq. (47) gives the long exposure MTF
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(v(h)),., .,.. = A'B "f dP W'(P - IRN) W(P) ( V'(P - ARI) V(P) ). (48)

Fried denotes the expectation of the fluctuations as the "atmosphere's MTF",

MTF.gII ) = ( V'( - IR?) V(9) ), (49)

and Hufnagel and Stanley (1964) call this the average mutual coherence factor.

Substituting from Eq. (47),

( v'(P - ARI) V(P)) = .(ep(0H I M9-4-AWN ). (so)

Using the fact that + and I are Gaussian random variables, Fried shows that

the atmosphere's MTF reduces to

-.1 DVMIID (61)
(V*(P- AR?) V(Q) ) = e- ,

where D(AR Iý) represents the wave structure function and is related to the

phase structure function D, and the log amplitude structure function D, by

D(r) a D,(r) + D.(r), * r-19- IRI1. (52)

The log amplitude structure function D, and phase structure function D. are

defined as

D,(r) • ([(9) - 1(9-XR/)I 2),

(53)

Do(r) • ([,(9) - ,($-)Rr)"
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and dsie th expected variation In thes o amplnude and pha,

respectively, at two points a distance Rf apart. Denoting the mTF of the

aperture function W(P) as

T,(/) a A' f d# W'(P-ARl) W(P), (64)

and using the fact that the atmospheric MTF of Eq. (51) is independent of 9,

the long exposure MTF of Eq. (48) now becomes

1 
( 6

~~(')CuIupuaaw :O-ji) -~0(All(6

or,

The long exposure MTF is related to the mutual coherence of the

E-field. The mutual coherence function (MCF) describes the autocorrelation

between the E-field at two points and is defined as (Goodman, 1985)

MCF m ( U'(P19,) U(,) ), (57)

where U represents the complex E-fleld. For these investigations t-=-t and

explicit time notation will be dropped. Assuming homogeneity, the MCF

becomes the spatial autocorrelatlon of the E-fleld
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MCF(f) f c @' U'(r) U(f' + ?). )

Taking the ensemble average of Eq. (46) shows that the long exposure MTF

comes from the average mutual coherence function (autocorrelatlon) of the

E-field in the aperture of the lens

(%I)=AIB (f dO LP(f - )LRf U(9))*( U-(9) U(Q19*.R))) (59)

Rewriting Eq. (56),

O-ID (-rC))6,.p, ((1(u') u(O'+) ) ).
0i a -TMwWr) w(r,) (60)

Equation (60) Is suitzble for Investigating the wave structure function D(r) since

computer simulations provide the E-flelds U and W on the right hand side of

Eq. (60).

Fried (1966, p.1380-1384) derived the wave structure function for

a spherical wave based on the three-dimensional spatial frequency spectrum of

refractive index fluctuations, 0,(,,z),

SOO) aSkfL. ff,[I J(.L)*.(rzCA c (61

where z represents the position along the optical path length, 0 < z < L. Fried

analytically solves Eq. (61) for a spherical wave and simple Kolmogorov

31



Woes, tVa has an kndex of rerction smtur function

Da(rZ) - 9(z) M. (62)

and a the-dimen•sonal spatial spectum of refatve index fluctuations

#(,.Z) - 0=. 40(z) '". (63)

SbtttnEq. (63) into Eq. (61) and integrating over spatial frequency K gives

D~)-2M00 L dz f edc (z)(Z'I**64

Assumng C.2(z) a constart a"n Me optical path gives

*(t) 1.0 s•.'C.r,. (65)

This equation relates the wave ructure function D(r) to physical parameters

k=2xJ•). C*2, and L for the pro ationthough trb . Followin Fried and

d" the constant r

Eq. (65) becomes

The arameoterr, cim ate coherence length of fie E-fked because tVe
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resolution allowed by the turbulent atmosphere Is On X A I r. (Fried, 1966,

p. 1380-1384).

Substituting Eq. (67) into Eq. (60) gives

* r(A)"" (( U(?') U(?')) (68)
(W(r) W(?,+P) )

and now directly relates a measure of the coherence length, r., to the E-fields

produced by computer simulation. Similarly, substitLting the integral form of the

wave structure function, Eq. (61), into Eq. (60) and numerically integrating for

spectra O,(c,z) with different inner scales allows comparing theory and

computer simulation. This comparison facilitates validation of the computer

simulations Incorporating an inner scale at low turbulence strengths where the

perturbation-basd theory remains valid, and provides a mechanism to explore

conditions of high turbulence strength and/or long propagation path lengths (the

saturation regime) where the perturbation theory may no longer hold.
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I1. COMPUTER SIMULATION

A. PROPAGATION CODE

These investigations utilized a wave optics computer simulation code

written by Brent Ellerbroek at the United States Air Force Phillips Laboratory in

Albuquerque, New Mexico that incorporates phase screen generation routines

written by Greg Cochrane, also with the Phillips Laboratory. The code, known

as YAPS (Yet Another Propagation Simulation), is a general purpose adaptive

optics simulation code written in FORTRAN that models optical propagation

through a turbulent atmosphere, sensing of the wavefront with Hartmann

elements (Hudgin, 1977) and a CCD array, optimized phase correction

calculation, and phase compensation via a deformable mirror, all within a time

indexed framework. These Investigations utilized only the propagation portions

of the code, modified the code to parameterize turbulence strength with C.2

Instead of r., added different source configurations, incorporated Gaussian, Hill,

and Frehlich Inner scales, and reduced the memory requirements.

The computer simulation utilizes the split-step method to simulate

propagation of the E-%ld through turbulence, as illustrated in Fig. (9). A source

E-field (left) was propagated in steps (with zero turbulence) over the

propagation distance L with a random phase screen applied to the field at each
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z-O z-L

Fgum 9 Computer simulation using the split-step method. The source (left) is
propagated in steps out to z = L, with phase screens applied at each step.

step. This method was based upon the extended Huygens-Fresnel principle

(Yura, 1992)

E= !ffA EA, -- kK(o) e" , (69)

which is Eq. (10) with an extra e0 factor that incorporates the random variations

in log amplitude I and phase +

ev a a '* (70)

For paraxial propagation, if the distances il are short enough, diffraction and
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Intereence will not have a chamn to cause significant log amplitude

fluctuations t allowing the approximation

OY F *1#. (71)

Inserting this approximation into Eqs. (11) - (19) gives

E(t,z) = fd .um .- 1uIA' for E(AO) 9'$(6) e-"19. (72)

Thus, a single step of the split-step method requires applying the phase screen

el to the E-field and propagating the result a distance z using the Huygens-

Fresnel propagator.

To implement this sequence of steps, the YAPS code followed a user-

defined list of tasks (stored as an input file) and called the appropriate routines

to accomplish those tasks. For these investigations, a typical list (see the

Appendix) first set up the initial parameters, including random number seed,

wavelength, number and size of fields, source characteristics, and phase

screen size. The list then initialized the field grid and applied the initial source

distribution, propagated the field in steps, generated and applied phase screens

between steps, and finally saved the complex values of the propagated field.

The YAPS propagations were run on Sun SparcStation-10's having 128

megabytes of RAM. This memory constraint allowed a maximum grid size of

1024x1024 (choosing N as an integer power of 2) for the current version of

YAPS. Each run consisted of 30 propagations, each with 32 phase
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screens/steps, and required -16 hours to complete. These investigations

normally utilized nine SparcStation-10's simultaneously doing runs with different

parameters. In all, these investigations consumed roughly 6000 hours of

computer time. A small Cray mainframe was available with more RAM, but was

not utilized extensively because the multiple SparcStations provided more

overall computational capacity.

Once the YAPS code had generated and saved the realizations of the

E-field propagated through turbulence, separate routines written in Interactive

Data Language (IDL) analyzed and displayed the fields. Analysis included

displaying two- and three-dimensional plots of the intensity field, calculating the

dependence of intensity and normalized irradiance variance on radial distance,

calculating the normalized irradiance variance over the central portion of the

field, calculating the atmospheric MTF and corresponding coherence length,

and calculating Strehl and intensity ratios (defined in Section E below).

The wave optics computer simulation required many choices to model

the stratospheric propagation scenario and to ensure validity of the simulation.

These choices included wavelength, propagation distance, inner scale, grid size

N, the physical size of each grid element Ax, the maximum strength of

turbulence 1p2.,, the source function of the E-field, the number of phase

screens, low spatial frequency corrections, number of realizations, and methods
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of calculating average statistical values. The following sections address these

and other choices and develop guidelines for validity of the simulations.

B. PHYSICAL PARAMETERS

Wave optics computer simulation of the E-field requires selection of the

parameters that describe the physical properties of the propagation. Usually a

specific propagation scenario has been selected for modeling, giving the

desired wavelength X, wavenumber k=27., propagation distance L, and the

range of turbulence strengths C.2. The stratospheric propagation scenario

chosen here used X = 500 nm, L = 200 kin, and C.2 = [lx10 21 , Ix10"] m"-M.

From these physical parameters, other useful scaling parameters occur, such

as the Fresnel wavenumber (Martin and Flatt6, 1988)

a R-1 (k)12 (73)

the Rytov-Tatarski normalized irradiance variance (Flatth, Wang, and Martin,

1993)

2a/ 2 C k7/4c; I P3  (74)
12 O

where a=1 .23 for plane waves and or=0.4 9 7 for spherical waves, and Fried's

coherence length for spherical wave propagation (Fried, 1966, p.1380-1384)
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ro: 0.80

= 2.91 k' od ) (75)

S(6.88 315  C).

I.C. -' L) L fr*SW0

The inner scale of the turbulence, I., often is not known exactly, but values can

be estimated. For stratospheric propagation, estimates of the inner scale are

around I - 15 cm (Beland, 1993). Once the inner scale is known, the Hill and

Frehlich versions of the viscous-convective enhancement inner scales (Hill and

Clifford, 1978) (Frehlich, 1992) were implemented with the parameter ico, ,

where K represents spatial frequency. The outer scale Lo for stratospheric

propagation lies in the range of tens to hundreds of meters but, again, due to

the difficulty in parameterization, was not included in these simulations.

C. COMPUTATION GRID

The E-field was represented as an NxN array of complex numbers in the

plane perpendicular to the axis of propagation. Generally, N was chosen as

large as possible, consistent with the amount of computer memory available

and the time required to run a simulation. Larger grid size N allowed a wider

spatial extent of the field and/or sampling of higher spatial frequencies (denser

mesh). The physical size that each grid element represented had to be chosen

to ensure validity of the computer simulation.
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Knepp (1983) discussed the relation of grid element size Ax and physical

grid extent NAx to inner and outer scales, to proper sampling of the phase

screens, to angular spreading of the field, and to proper sampling of the spatial

frequency quadratic phase factor in the Fourier transform formulation of the

Huygens-Fresnel propagation. For the latter, the quadratic phase factor in

Eq. (20) takes the form

,0 L (76)

where . is a spatial wavenumber in red/m. Applying the Nyquist criterion,

which requires that this quadratic phase change by less than n across one grid

element Ax, Knepp derives

L 2 N< (x (77)

Roberts (1986) applied similar techniques and derived Eq. (77) without

the factor of 2. Again applying the Nyquist criterion to the quadratic phase

factor in the Fourier transform propagator Eq. (20) but utilizing more succinct

differential notation,

df df At
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and,

A# Af2 L L4.< (79)

where f. represents the spatial frequency with the maximum rate of change of

phase. At the edge of the grid, f,, Is

2 2 N x=2 Ax"

After substituting and rearranging,

L < N (Ax)'. (61)

When the propagation distance L is known, as for a specific propagation

scenario, and when the grid dimension, N, is known, then the grid element size

is

Ax > fN" (82)

Sampling of the phase factor in the spatial frequency domain must meet

the Nyquist criterion as a minimum. Some circumstances may warrant applying

even stricter sampling criteria such as restricting the phase to change by less

than ax across one grid element, 0 < a < 1. Furthermore, suppose the

propagation involves spatial frequencies out to O,., where 0 I< < 1. Then
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A4 < az, ad to maximum spatil frequency is f.f.. Substituting

constrnts into the analysis gives

Ax > (83)

V Whichever is used, Eq. (82) and (83) provide simple formulas for choosing the

minimum grid element size for the propagation.

Spherical wave propagation places an additional constraint on the choice

of grid element size. In the parabolic approximation, a spherical wave has a

quadratic phase curvature which represents divergence from a point source a

distance S (focal distance) away

X Pa,(84)
Is

where p measures the radial distance from the propagation axis. Roberts (1986)

analyzed the sampling criteria for this phase just as for the spatial frequency

phase (though applied to the case of a two-step Fourier transform Huygens-

Fresnel propagator and not applied specifically to spherical waves). Proceeding

as above and applying the Nyquist criterion to this phase factor

=..(.LE) , At. (86)
dp dp X S Ap
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-Ap 2 x pm<. (86)
is

where p,. represents the maximum radial distance. Using p," corresponding

to the edge of the grid and ,p m Ax,

N NAx (87)

2 2

Substituting Eq. (87) into Eq. (86) and rearranging,

a X < 411! (88)

Again generalize the analysis by requiring the maximum phase change

across one element to be ai (0 < a < 1), and requiring the field energy to be

confined within a region of radius yp,.,, (0 < y < 1). This gives

A fX <I Fi T -. (89)

Combining Eq. (83) and (89),

<x (90)

Spatial frequency sampling considerations for the Huygens-Fresnel propagator

have placed a lower limit on Ax, while spatial sampling considerations of the
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quadratic approximation for spherical wave phase have placed an upper limit on

Ax.

The computer simulations used in these investigations examined high

levels of turbulence that introduced energy into the highest spatial frequencies

representable on the grid and that scattered energy to the edges of the spatial

grid. The simulations also assumed that the Nyquist sampling criterion was

sufficient. These considerations specified the parameters a = = y = 1, and

lead to

N <AX<cI.• (91)

Additionally, these simulations propagated a spherical wave from the point

source at the origin (focus) out to a distance S, i.e. S = L, making the

inequalities in Eq. (91) become the equality

AX. =fX L. (92)

These choices unambiguously determine the guideline for grid element size for

spherical wave propagation based upon sampling considerations in the spatial

and spatial frequency domains. Equation (92) also determines the grid element

size for plane wave propagation since minimizing the grid element size of
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Eq. (82) optimizes the sampling of high spatial frequency distortions caused by

turbulence.

Some simplifications were made in the above analysis. First, the

maximum spatial distance and maximum spatial frequency used in the

quadratic phase factors were chosen for the nearest edge of the grid and

correspond to the radius of the largest circle that will fit inside the grid. These

choices disregarded the comers of the grid, but this omission should not have

affected the simulations greatly because the majority of the energy in both the

spatial and spatial frequency domains was confined within the radius of the

circle to minimize aliasing. Second, the Nyquist criterion was applied to the

phase change across the x or y dimension of the element. Analyzing the phase

change between opposite comers of a grid element increases Af or Ap by r.

Finally, an NxN grid with N even requires placing the (x,y) = (0,0) point at a grid

point, such as (N/2 +1, N/2 +1) that is not the exact geometric center of the

grid. The distance to the nearest side is (N-2)/2 elements instead of N/2, which

is a minor change for large N. Incorporating these three considerations into the

analysis for a spherical wave gives

2 A L (N-2) <Ax< (03)
N' 2
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However, squaring Eq. (93) and rearan leads to

L C 1 N(4)
4 (N-2)?

so that a spherical wave propagation with these additional constraints should

only be carried out over a maximum distance lIs" than S/4. Since these

investigations needed to propagate a spherical wave over the full focus

distance S starting at the source, the simpler expression Eq. (92) was used to

determine the grid element size for these investigations. As a comparison,

Flatti, Wang, and Marlin (1993) used a grid element size of 0.7mm for a

1024x1024 grid and 0.5mm for a 2048x2048 grid with )XL = 0.000638 in2 .

Equation (92) with these parameters prescribes grid element sizes of 0.78 mm

and 0.55 mm, respectively, which are -10% larger to meet sampling

considerations for the Huygens-Fresnel propagator.

The split-step method in the computer simulation divides the optical path

into multiple steps. However, the distance L used to determine the grid

element size must correspond to the total propagation path length and not the

step size. To justify this, consider the vacuum propagation of a field across the

distance L = Az. If propagation occurs In a single step, then the Fourier

transform Huygens-Freonel propagator, Eq. (20), becomes

E(Az) - FT[ *-12"at' FTIE(0)]I (96)
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If the path has two steps, then

E(Az) - IFTI .-- FT[E(Azl2)] (,

and

S~(97)
E(Az/2) = IFTI e FTIE(O)]].

Substituting Eq. (97) into Eq. (96),

In- o I " i (98)
E(Az) = IFTj e 2 FT[ IFT[ e 2 FT(E(O)]Iji.

But he middle Fourier transform/ inverse Fourier transform pair cancel each

other, and this two step vacuum propagation becomes the one step propagation

of Eq. (95). Thus, the grid element size must be chosen to correspond to the

total distance Az = L since multi-step vacuum propagations mathematically

reduce to a single step of L.

D. SOURCES

The choice of a given propagation scenario significantly affects the

irradiance and coherence statistics. Plane wave propagation differs from

spherical wave propagation, as seen in the Rytov-Tatarski theory (Tatarski,

1961), while beam wave propagation (Gaussian intensity profile) exhibits an

Intermediate behavior (Ishlmaru, 1978). The source must also be chosen to
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keep the lateral extent of the source propagation within the spatial and spatial

frequency limits of the computer simulation.

Coherent plane, beam, and spherical waves differ in the shape of the

isophase surfaces of the E-field. Beam wave sources possess a quadratic

phase (Ishimaru, 1978),

NO I A (99)

where R. represents the radius of curvature of the wavefront. Plane wave

sources have an infinite radius of curvature so that

NO (100)

Spherical wave sources have a radius of curvature equal to the propagation

distance from the origin, or focus, S

NO = XP (101)

Turbulence introduces random phase shifts across the wavefront while

diffraction and interference further distort the wavefront during propagation

causing the light to become partially coherent. The resulting partially coherent

E-field no longer possesses a simple isophase surface and the coherent

wavefront characterizations no longer apply. The differences between plane,

beam, and spherical propagation appear in differences in statistical properties,
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such as normalized irradiance variance (Tatarski, 1961)

oa 1.23 C 7 kmL IN, pka (102)

-2 = 0497 0C k7 L'I Spi#'k*I

(see Ishimaru, 1978 for the more complicated beam wave expression), and the

coherence length (Fried, 1966, p. 1380-1384)

3.02 (C)-W k-M L-v, s, be
r0 { (103)S1.68 (Cv"' k~' L~', p/ane.

When the E-field has propagated through turbulence to the far field of

the source, diffraction has caused the E-field to expand laterally so that its

statistical properties approach those of a spherical wave. The far field begins

at a distance (Saleh and Teich, 1991)

Z - 10 (104)

where p is the radius of the source. Spherical propagation properties result

when the maximum radius of the source p,,. approximately satisfies

PMW < ¢oY -11. (106)

For a stratospheric propagation scenario with L=200 km and X = 500 nm, the

49



source radius must be less than 10 cm to obtain enough divergence to produce

spherical propagation statistics at z = L.

Plane wave propagation statistical properties result when the E-field is

evaluated in the near field of the source because the E-field does not have the

opportunity to diffract or expand significantly. Starting with Eq. (105) for the far

field point, near field propagation satisfies

Z I I << 10( 106)
10 1. 1

or,

PMW > V'•"-;'•. (107)

For the stratospheric propagation scenario, source radius p,. > 1 m for near

field propagation. However, validity of the Fresnel approximation to the

Huygens-Fresnel equation places an upper bound on p,. (Saleh and Teich,

1991)

(pL2 << 4 z3 A, (108)

(derived from considering the Taylor series expansion of the Cartesian

expression for r). For the L = 200 kin, X = 500 nm stratospheric propagation

scenario, the upper bound on source lateral extent becomes p,, < 350 m. A

1024x1024 grid with the grid element size Ax = 0.99 cm from Eq. (92) gives a
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maximum grid radius of only 5 m, so that the Fresnel approximation is satisfied

for any source represented on this grid.

Ishimaru (1978) evaluated the irradiance statistics for the intermediate

Gaussian beam wave case. The normalized irradiance variance along the

beam axis depends upon the beam waist size, W., and the radius of curvature,

Ro. Numerical integration of the log amplitude variance formula (Walters, 1994)

provides a smooth transition from spherical wave variance statistics to plane

wave statistics, with a dip in between, as shown in Fig. (10). Numerical

simulation results with Gaussian and Airy-type sources of varying widths have a

corresponding behavior, as shown in Fig. (11).

The finite grid in a computer simulation places limitations on the source

E-field. The physical grid element size sets a lower bound on the width of a

narrow source approximating a point source. A source of width close to a

single grid element may still be undersampled, causing the resulting propagated

field to exhibit sidelobes from absence of the proper high spatial frequencies in

the representation. Correspondingly, a spherical wave from a very narrow

source will propagate with large angular divergence that may exceed the

physical dimensions of the grid and cause energy to leak off the grid and be

aliased back into the field. Thus, the source must be wide enough to constrain

the propagated field so that most (>90%) of the energy remains within the grid.
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Similarly, a plane wave source cannot extend too now the grd edge because

turbulence can scatter energy off the grid only to be albased back in.

Statistical calculations on the final beam pattern require a reasonably

uniform central patch to perform computations. If the region over which

statistical calculations are made has variations, such as sidelobes arising simply

from vacuum propagation, these variations become a part of the statistics, such

as the normalized irradiance variance. Often, Gaussian type profiles present a

minimum of such variations because they do not have as much energy in high

spatial frequencies. However, because they are not fiat over the calculation

region, different regions of the beam must often be weighted with respect to

their mean intensity in doing statistical calculations such as the normalized

irradiance variance.

To meet these constraints, Martin and Flatt6 (1990) applied a quadratic

phase curvature to a Gaussian source, thereby increasing the divergence and

flattening the final irradiance pattern. Spherical wave sources were simply

chosen narrower than the plane wave sources to make them diverge more.

Flatt6, Wang, and Martin (1993) also used a super-Gaussian to model an

extended beam source.

The simulations presented here used an alternate method suggested by

Ellerbroek (1993). The final field at z = L was specified as an aperture of

radius equal to one half the grid radius and given a quadratic phase
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corresponding to a spherical wave originating at the origin z = 0 (Fig. (12)).

This aperture field was then backward propagated without turbulence from z = L

to the focus z = 0, effectively Fourier transforming the field and yielding the

numerical equivalent of the Airy pattern (Fig. (13)). This source was then used

as the approximation to a point source for all spherical wave propagations. The

advantages of this method were that the source was quite narrow, having

appreciable amplitude over only a few grid elements, and that the zero

turbulence propagated field at z = L was necessarily constrained within the grid

and possessed a central region with uniform illumination.

The significant energy at high spatial frequencies required to represent

the sharp edges of the initial aperture at z = L created one drawback since it

caused strong Fresnel fluctuations at intermediate distances between 0 and L.

To investigate the significance of these Fresnel fluctuations, the energy at these

high spatial frequencies were reduced by windowing the aperture before the

backward propagation by applying a Gaussian rolloff to the cylinder edges,

1 , r< 0.7 r'
Ia'!-I " ' (109)e xpe 0(-I-r - 0.7r ) r 0.7 r, n=2,

where r' represented the corresponding aperture radius. Because this rolloff

reduced the energy in high spatial frequencies for the source representation,

this slightly increased the size of the final central region of the E-field where
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statistical calculations could be performed. Other values for the power n on the

exponent were tried (n = 1, n = 5, n = 10) but the simple Gaussian (n = 2)

worked best. While this rolloff appeared useful, identical runs, one with the

sharply defined aperture edge and one with a rolled-off Gaussian edge, showed

less than 0.5% difference in the normalized irradiance variance values. This

difference was negligible compared to statistical fluctuations in normalized

irradiance variance of up to -10% between runs with different random phase

screens. Empirical observation of simulations revealed that once even modest

amounts of turbulence existed (typically [02 > 0.05 and well within the Rytov

regime), the high spatial frequency energy introduced by the turbulence

dominated the details of the source.

Another deficiency was the representation of the initial cylindrical

aperture on a rectangular grid. Due to the Cartesian nature of the grid, the

curved beam edge was actually jagged instead of circular. However, for large

enough grid (e.g. 1024x1024) this departure from a cylinder introduced

negligible effect. The only case where a difference was noted was with a

256x256 grid, and increasing the beam radius a small fraction of a grid element

size eliminated that difference.

Another limitation of this method was that the final E-field could not

approach the grid radius. If this happened, then high turbulence strengths

would scatter energy off the grid, producing aliasing. Due to the periodic
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Fourier transform method of propagation, this energy would not be lost, but

aliased back in at lower spatial frequencies. Martin and Flatt6 (1990)

implemented an attenuating region just inside the grid radius to absorb this

energy and to prevent its being aliased back in. This obviously introduced a

type of windowing function in the spatial domain and did not conserve energy in

the field, possibly complicating final field comparisons. Rather than include

those effects, these simulations simply chose the aperture radius sufficiently

small (at one half the grid radius) to prevent significant energy scattering off the

grid in the spatial domain while still providing a relatively uniformly illuminated

central region for statistical calculations.

Obviously, other choices for a source existed. For example, the initial

field could have been expressed according to an analytic expression for the

Airy pattem (Fig. (14)). This source gave a vacuum propagated final field that

was very close to a broad cylinder, but which exhibited noticeable sidelobes at

the edges (Fig. (15)). These sidelobes came from spatial truncation of the Airy

pattern. The back propagated numerical Airy pattern of Fig. (13) differs from an

analytic Airy pattern in a way that eliminates the sidelobes in the final irradiance

field.

A point source could be modeled by a single, nonzero pixel at the center

of the grid being nonzero, as shown in Fig. (16). Figure (17) shows that the

vacuum propagated field exhibited noticeable sidelobes at the edges and
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covered the entire aperture, moaning that turbulence would immediately scatter

energy out of the grid only to be aliased back in and distort the field. A similar

source was a uniformly illuminated grid at z = L with quadratic phase, backward

propagated to z = 0. While this eliminated the vacuum propagation ringing

problem by definition, it immediately suffered from aliasing when turbulence was

nonzero and scattered energy off the grid.

E. MAXIMUM TURBULENCE STRENGTH

One of the more difficult choices in a computer simulation of propagation

is determining the range of turbulence strengths over which a simulation is

valid. In general, the processes of optical propagation through a turbulent

medium are not band limited in spatial frequency. But when a computer

simulation uses a finite grid to implement a source function, to propagate via

the Huygens-Fresnel principle, and to model the turbulence by phase screens,

aliasing inevitably occurs due to the finite sampling interval. This problem only

becomes more severe as turbulerce strength increases. The coherence length

measures the physical distance over which the mutual coherence of the E-field,

(E- E ý, declines to e 1 of its peak value. As turbulence increases, the E-field

fluctuates significantly over smaller and smaller distances and the coherence

length decreases. An NxN discrete grid representation of the E-field samples at

a specific minimum distance, and hence at a maximum spatial frequency. If the
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E-field 'luctuates in less than this minimum distance, the grid samples will not

represent the E-field accurately, causing aliasing. The question is not whether

aliasing occurs, but how much aliasing occurs for a given set of simulation

parameters, and at what point does aliasing invalidate the results of the

simulation.

These investigations identified three telltale signs of aliasing. First, as

aliasing became significant, irradiance plots of the turbulent E-field lost structure

and exhibited an isotropic fine-grained appearance, as Fig. (18) shows.

Second, the irradiance that should have been roughly radially symmetric

Figure 18 Intensity plot showing fine-grained pattern due to significant aliasing.
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became bounded within a fuzzy rectangular region, as Fig. (19) illustrates. The

irradiance at the center of the image increased, or started peaking, while the

irradiance at the edges decreased, as shown in Fig. (20).

Figure (21) also illustrates this peaking behavior by plotting average

irradiance versus radius, in units of grid element size. The E-field propagated

with zero turbulence had the radially symmetric aperture profile in this

simulation. As the turbulence became stronger, the sharp edges of the initial

cylindrical irradiance pattern became rounded and energy spread outward.

However, when significant aliasing started occurring around 13o2 - 5 for this

64x64 grid representation, the energy began creeping inward and the center of

the field started increasing in irradiance.

The irradiance at the edge of the grid was -1/40 that of the center when

significant aliasing began. This indicates that very little energy leaked off the

spatial grid due to beam divergence. Actually, the use of Fourier transforms in

the propagation preserved the energy so that any energy that leaked off the

grid was aliased back into the field on the grid. Energy that leaks off in the

spatial domain results from undersampling in the spatial frequency domain, and

vice versa.

Aliasing most often occurs from undersampling in the spatial domain,

which corresponds to energy leaking off the grid in the spatial frequency

domain. Prudent choice of source and the final irradiance patterns across the
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grid can minimize the amount of energy that leaks off the grid to be aliased

back in for the spatial domain. However, as turbulence strength increases, the

coherence length decreases and more energy occurs at higher and higher

spatial frequencies. Eventually spatial undersampling occurs and this high

spatial frequency energy leaks off the spatial frequency grid and is aliased back

in. Figure (22) gives the radial power spectral density corresponding to Fig.

(21) and shows the spread of energy to higher spatial wavenumbers as

turbulence strength increases. The low turbulence spectra possess a strong

central peak that becomes more rounded and flatter as turbulence strength

increases, causing more energy to leak off the grid. EveniJally, enough energy

has leaked off the grid and aliased back in to make the spectrum approximately

uniform at all spatial frequencies.

Figure (23) actually shows this energy being reflected back in after it

spills off. To reveal this phenomenon, the radial power spectrum for a 512x512

grid has been divided by the corresponding part of the power spectrum on a

1024x1 024 grid. Since the larger grid has been chosen with a finer mesh than

the 512x512 grid, the larger grid will not experience significant aliasing as soon.

As 'rbulence strength increases, the ratio shows the enhancement of energy

at the, edge of the 512x512 grid (bins 200-256) as the energy leaks off / reflects

back in. At very high levels of turbulence, the aliased energy has spread

inward over all spatial frequencies.
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Allasing appears to cause the Intensity peaking behavior of the central

field. These investigations parameterized this onset of peaking with five

methods, which provided guidelines for maximum turbulence strength W.

valid for a given grid size. An irradiance ratio and a Strehl ratio were first used

to identify the onset of the peaking. A Gaussian source was propagated at

turbulence strengths W0
2 = [5x104, 5x10 4 , 5x10"2 , 0.15, 0.5, 1.5, 5, 15, 50,

150, 5001 using 64x64, 128x128, 256x256, 512x512, and 1024x1024 grids.

Ten runs for each case were used to calculate the average irradiance as a

function of radius. These irradiance profiles were used to calculate an

irradiance ratio, defined as the irradiance at the grid center divided by the

irradiance at the maximum grid radius, and also the Strehl ratio, defined as the

irradiance at the grid center for the E-field propagated through turbulence

divided by the center irradiance for an E-field propagated through zero

turbulence. Figure (24) plots the irradiance ratio versus turbulence strength for

different grid sizes, and Fig. (25) shows the Strehl ratio versus turbulence

strength for different grid sizes.

As turbulence strength increased, diffraction and scattering spread the

energy outward and caused the irradiance and Strehl ratios to decrease.

Eventually, both ratios reached a minimum and then started increasing because

of the alias-induced intensity peaking. This minimum occurred at higher

turbulence strengths for larger grid size because the larger grid sizes sampled

with a finer mesh and did not significantly alias as soon. Using estimates of
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these minima as a guide to the onset of significant aliasing, Fig. (26) plots

these p02 values versus grid size from the irradiance and Strehl ratios, along

with least squares fits and extrapolations to larger grid sizes.

Martin and Flattd (1988) and others have validated computer simulations

for predicting statistical properties such as normalized irradiance variance from

the E-field propagated through turbulence. The departure of the computer

simulation E-fields and intensities from their known or expected smooth

behavior as turbulence increases represents another telltale sign of significant

aliasing. Figure (27) shows the normalized irradiance variance calculated from

computer simulated E-fields versus p3o2 using grids of sizes 64x64, 128x128,

256x256, 512x512, and 1024x1024. The irradiance value used for

normalization was taken as the average irradiance over the central calculation

region. Though this single value normalization is not optimal (see the following

section, F. Additonal Simulation Parametem), it does make the normalized

irradiance variance calculation sensitive to the peaking behavior because

peaking adds large amounts of unphysical variance. In the Rytov regime

(13o 2 < 1.0), all grids successfully simulated the E-field as indicated by their

normalized irradiance variances agreeing with the Rytov-Tatarski theory. In the

saturation regime (p02 _> 1.0) the normalized irradiance variance saturates and

turns downward, eventually approaching unity according to asymptotic theory.

Assuming that the 1024x1024 grid provides the most accurate propagation
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simulations with different grid sizes.

75



simulation, the 64x64 grid normalized irradiance variance departs from the

1024x1024 values before the peak was reached, and 128x128 grid normalized

irradiance variance departed just beyond the peak. Their meshes were not

small enough to adequately sample the E-field, and the resulting aliasing

caused peaking that drove up the normalized irradiance variance calculation.

The 256x256 grid produced the saturation peak, but soon suffered from

significant aliasing. The 512x512 calculations successfully produced the peak

but departed from the 1024x1024 predictions before po2 - 50. Judging from

these behaviors, the 1024x1024 grid probably remains valid through 030
2 - 50.

All grids eventually showed the normalized irradiance variance anomalously

rising for high enough turbulence strength b3cause aliasing produced peaking.

Estimates of the maximum p 0
2 values at which the five grid sizes remained valid

are plotted, along with a least squares fit extrapolated to larger grid sizes, in

Fig. (28).

In a similar manner, the coherence length and the half width at half

maximum (HWHM) of the atmospheric MTF predicted using simulations with

different grid sizes also show unphysical behavior as aliasing became

significant. Figure (29) plots the simulation derived coherence length,

normalized by the Kolmogorov turbulence theoretical values, versus turbulence

strength measured by 03o2. Figure (30) shows the corresponding plot for

HWHM. Both show the eventual strong rise in coherence length and HWHIM
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turbulence strength versus grid size for valid simulations.
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Figure 30 Spherical wave HWHM from simulations versus turbulence strength
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1024x1024 (X's).

79



compared to theory for strong turbulence when aliasing produces peaking.

Estimates of the minima of the plots can be used as another indicator of the

turbulence strength at which significant aliasing occurs. Figure (31) plots these

points versus grid size, along with a least squares estimate extended to larger

grid sizes.

The onset of peaking and departure from expected physical behavior

provide symptoms of aliasing but do not indicate the amount of aliasing

required to cause them. Determination of the fraction of total field energy that

is aliased serves as one parameterization of the amount of aliasing and

accomplishes two goals: (1) relate the amount of aliasing occurring to an easily

measurable characteristic of the simulation , and (2) determine how much

aliasing must occur to invalidate the computer simulation.

First, to parameterize the amount of energy aliased, the same size

Gaussian source was applied to 64x64, 128x128, 256x256, and 1024x1024

grids and then propagated through turbulence. The width of the source was

chosen so that the Fourier transform had approximately the same width on the

final grid and the Gaussian sources on the different grids were normalized to

the same energies. Since identical sources were applied in the spatial domain

according to the analytical Gaussian formula, the spatial frequency

representation of these sources improved as the grid size increased and the

mesh became finer. The 1024x1024 grid served as an approximation to infinite
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grid size. Due to its larger extent and finer mesh, the 1024x1024 spatial

frequency representation of the Gaussians contained spectral energy in the

region outside the spectral footprints of the smaller grids, as Fig. (32) illustrates.

Since each grid started with the same total energy, the fraction of spectral

energy in the 1024x1024 grid lying outside the spectral footprints of the smaller

grids approximated the amount of energy aliased in the smaller grids. This

process was then applied to propagations of the Gaussian beams through

increasing strengths of turbulence, well into the significant aliasing regions for

spectral energylarge grid i aliasCerd InnrY

small grid

Figure 32 Illustration of the spectral representations of the Gaussian beam
with different grid sizes.
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the smaller grids. This method provided estimates of the fraction of energy

aliased versus turbulence strength for the three smaller grids.

To achieve the first goal of relating the amount of aliasing to a

measurable simulation parameter, the average radial power spectral density of

the propagated E-field was calculated for each turbulence strength with the

smaller grids. Using these profiles, a spectral ratio was calculated, defined as

the ratio of the power spectral density at the grid center to the power spectral

density at the maximum grid radius. Figure (33) plots these results, and also

includes spectral ratios for 512x512 and 1024x1024 grids. Using the

information on fraction of energy aliased versus 1O2 and spectral ratio versus

13o2, the turbulence strength N3a2 served as the connection between fraction of

energy aliased and the measurable simulation parameter of spectral ratio.

Figure (34) shows plots of these spectral ratios versus corresponding fraction of

energy aliased. The log-log plot behavior proved approximately linear over the

range 0.001 to 0.1 , which appears very useful because 0.1% of energy aliased

probably does not affect the simulation results significantly while more than

10% of energy aliased probably does.

Using the data points of Fig. (34) and performing a linear least squares

fit to the logarithms

logi(R) = 0Og0(FR) + logA, (110)
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or equivalently,

R - 10A (FR)M (111)

where R refers to spectral ratio and FR refers to fraction of energy aliased,

gives A= -1.1 * 0.1, B= -2.1 ± 0.1 . Substituting the A and B values into Eq.

(111) and rearranging,

FR,, 11R (112)

This equation achieves the first goal of relating the fraction of energy aliased to

a measurable quantity from the simulation.

However, Eq. (112) should be used with caution because it appears to

be specific to the narrow Gaussian source used to derive it. Figure (35) shows

the same calculations carried out for a source that was the Fourier transform of

an aperture of radius equal to 3/4 of the 64x64 grid radius (i.e. Airy-type

source). The linear region did not appear, though the plot matched the

Gaussian source plot when the fraction of energy aliased was greater than

0.1 . The differences arise from the different spectral representations of the

propagated E-fields. The abrupt, cylinder-shaped irradiance patterns start with

more energy at higher spatial frequencies in the spectral domain than the

Gaussian patterns and thus never get below 0.001 fraction of energy aliased

even at very low turbulence strengths and high power spectral ratios.
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The second goal of determining the amount of aliasing that invalidates

the simulation used the fraction of spectral energy aliased to generate another

guideline for maximum strength of turbulence for a given grid size where the

maximum fraction of energy allowed to be aliased in a simulation was 10%.

Equation (112) predicts a spectral ratio of approximately 10 for 10% of energy

aliased. Linearly interpolation between the data points of Fig. (33) provided

estimates of the turbulence strengths C. 2 ( thus 0 02 ) that gave a spectral ratio

= 10, for 10% energy aliased, for the five grid sizes. Figure (36) plots these

values and a least squares fit extended to larger grid sizes. The least squares

fit as a function of grid size N was

1og1 p, = 0.9 log,.( N) - 0.9, (113)

or,

0 = .1 N c. (114)

The fraction of energy aliased also provided estimates of maximum 03,2

for the Airy-type source. Figure (37) plots the fraction of energy aliased versus

turbulence strength for the 64x64, 128x128, and 256x256 grids. Again

choosing 10% energy aliased and using linear interpolation yields data points

for the solid line in Fig. (36) that shows the maximum turbulence strengths

obtained from Fig. (37). For 10% energy aliased, the predictions for maximum
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p,2 for the three smaller grids using the Airy-type source agree within -20% with

the predictions frora the Gaussian source. Lower values of fractional energy

aliased do not provide such agreement.

Another measure of maximum turbulence strength involved the

coherence length and grid size. Alising occurs because the E-field fluctuates

significantly over scale sizes smaller than the grid element size. Intuitively,

some connection should exist between coherence length of the E-field and the

onset of significant aliasing. Fried's coherence length r. represents the distance

over which the atmospheric MTF falls to exp(-3.44) = 0.032 (Fried, 1966, p.

1380-1383). Equation (38), which relates W, to C. 2. and Eq. (66), which

relates r. to C.I. and Eq. (92). which relates the grid element size Ax to N,

when combined. y,,le the turbulence strength correponding to a given grid size

for a specific number (y) of Ax's per r.

P: (115)o. - Ny AM *Aw mw

Figure (38) plots these 062 for y = 2. 2.5, and 3 for the spherical wave case

The 10% sMased energy line. Indicated by plus symbols, lies nearest the 2.5 Ax

per r, line The E-field must be spatially sampled with 2.5 Ax per r. to limit the

"fraction of energy allsd to 10%, anatogous to the Nyquist criterion of two

sampleS per cycle
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Figure (39) provides a combined plot of the maximum turbulence

strength I3P2 that produced valid E-flelds for a given grid size from all of the

foregoing measures 'Isity ratio, Strehl ratio, normalized irradiance variance,

coherence length, HWW-M, fraction of energy aliased, and coherence length

(y = 2.5). Most estimates lie within a factor of 2 of each other, and the 10%

energy aliased line (dottedipluses) given by Eq. (114) represents an

approximate lower bound to those estimates based upon onset of significant

aliasing.

Figure (39) provided three sjnifl .it conclusions: (1) the computer

simulations remained valid until pproximnat•l• 10% of the energy became

abased (achieving the first goal), (2) using the 10% energy alased line, the

maximum turbulence strength • for valid E-flelds for a grid size Vb! was

a 0.1 N U, (116)

and (3) maximum valid turbulence srength corresponded to approximately

2.5 grid elements per r. (based on proximity of the y = 2.5 line to the 10%

energy aMiased lOne). Conclusion (2) implies that doubling the grid size N (with

grid element size Ax given by Eq. (92)) slightly less than doubles the maximum

W2 that the grid can simulate, mnd that these investigations. which use a

1024x1024 grid, should be valid up to ,- 50.
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F. ADDITIONAL SIMULATION PARAMETERS

Additional aspects of a computer simulation were addressed to ensure

validity, induding the number of phase screens, the method of normalizing the

irradiance variance, the number of realizations (propagations through

turbulence) required for representative statistics, and the width of the final

irradeance field on the grid.

The number of phase screens must be large enough to represent the

turbulence accurately along the path and produce proper irradiance and

coherence statistics. Martin and Flatt4 (1988) determined the number of phase

screens by requiring that the varince due to propagation over the distance Alz

between phase screens be less than 1110 the variance from the total

propagation over the distance L

o;l(Az) < MI;l(L.), 17

and additionally that the value of the variance from on. stoep be less than 0. 1

oC(AZ) < 0.1 . (116)

With these considerations. they generally used 20 phase screels for heir

simulations

These investigations oxam*nd the Wradlance and coherence statistics

directly and conckldd that appromxmately 30 phase screens were required to
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ensure simulation validity. Figure (40) shows a set of spherical wave

normalized irradiance variance simulations for a 512x512 grid, p, = 1.5, and

the number of phase screens varying between 2, 4, 8, 16, 32, and 64.

Assuming the 64 phase screen case most closely approximated physical reality,

as few as 8 phase screens gave a normalized irradiance variance within -10% of

this value. By 32 phase screens, the normalized irradiance variance had

stabilized to within 2% of the 64 phase screen value. For this level of

turbulence that lies at the beginning of the saturation regime, the addition of

phase screens beyond 32 did not affect the normalized irradiance variance

significantly.

Figure (41) shows the normalized irradilance variance from propagations

with 2, 4, 8, 16, 32, and 64 phase screens at N' = 50 with a 1024x1024 grid

and 30 realizations for each number of phase screens. This strength of

turbulence represents the limit of simulation validity with the 1024x1024 grid

and lies in the strong saturation regime beyond the normalized irradiance

variance peak. In this case, 32 phase screens provided a normalized

iradlance variance wthin 3% of the 64 phase screen case, and the 16 phase

scree vakme was within approximately 10%. Because 32 phase screens

appears to incamm the accuracy of the simulation by -5% compared to 16

phase screens, the larger number of phase screens was chosen for these
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Using the same 1024x1024 realizations, the coherence length r, and

HWHM of the atmospheric MTF were calculated for the 2, 4, 8, 16, 32, and 64

phase screen cases. Figure (42) plots the results. For coherence length, the

32 phase screen value was within approximately 1% of the 64 phase screen

value, and the 16 phase screen value was within approximately 3%. The

HWHM plot indicates 2% and 3% agreements for 32 and 16 phase screens,

respectively. The 32 phase screens used for these investigations thus proved

sufficient for coherence length and HWHM calculations.

The method of normalizing the inlriance variance and the number of

realizations to use for statistical accuracy proved to be interrelated

consideratis. Turbulence diffracts and scatters energy outward from an

initially well-defined beam. For the Airy-type source used in these

investigations, the average Wradince over the central portion of Me final

propagated field was uniform for zero turbulence but became a function of

radial distance from the propagation axis when turbulence was present. This

was an artifact of the computer simulation that had to use a beam spatially

confined to the grid rather than a true spherical (or plane) wave, Figure (43)

shows irradiance versus radil distance r for the central 256x256 portion of

1024x1024 grid simulations, averaged over 30 realizations, and usitr a

turbulence strength f,' z 50, The average ra dia iralance varies by

approximately I5% over the width of this calculaton region This radial
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variation of the average irradiance was removed from the normalized irradiance

variance calculations with a method similar to that of Flatt6, Wang, and Martin

(1993). The calculation region was restricted to half the radius of the zero

turbulence irradiance pattern, which was previously chosen as one half the gnd

radius. With the 1024x1024 grid, this calculation region equaled the largest

radius circle inside the central 256x256 portion of the grid. This disk was

further divided into concentric rings and the inadiance in each ring averaged

over all 30 realizations. These average ring iradinces were used to normalize

the irradiance variance calculated from each field. Smaller ring size (thus more

rings) reduced the number of points in the irradiance average for each nng and

required more realizations to ensure a sufficient number of points to yield a

stable average irradiance.

The ring width had to be smal enough to compensate for te radial

variation in average irradince and the number of realizations large enough to

provide enough points to yield rpresentative average values To determine

suitable ring width and number of realizations. 50 1024x1024 realizations with

the Airy-type source at 161 = 1.5, 3, 10, and 20 were run and the normalized

irradiance variances calculated using ring widths of 128. 32. 8, 4, 2, and 1 gUd

elements, &x, and with number of realizations in the average equal to 1, 5, 10,

15, ... 50 Figure (44) plots the results for the 16' a 10 set The pluses line

corresponds to I ring of width 128 Ax (i.e. the whole calculation region) and a
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stable normalized irradiance value was achieved using about 20 realizations.

However, a single ring does not compensate for the radial variation in average

nrradlance and can thus give erroneous normalized irradiance values (for the

same reason, it becomes sensitive to the peaking behavior from significant

aliasing). The X line represents the divsion of the disk into 4 rings of width 32

Ax and required -25 realizations in the average to give a stable normalized

irradiance variance. Smaller ring wkIths (lines with squares, diamonds,

triangles. and asterisks lines) all showed similar behavior and required - 30 runs

to reach a stable average normalized irradlance variance. The W2 = 1.5, 3,

and 20 runs all provided similar results. A similar P,ý = 10 series with a

Gaussian source required a minimum of 8 rings (16 Ax each) and 30

reaizations to achieve stable average normalized irradiance variances.

Consequently, these investigations used 30 realizations as a guideline for valid

simulation, and chose a ring width of four grid elements to allow the greatest

squstment to real variations in average radial intensity and yet remain

computationally efficient. As Fig. (44) shows, insufficient averaging over enough

realizations to yield tny epresentative average values can reduce the

normalized irrmlance variance by 15 - 30%.

Simi"arly, stable coherence length values (discussed in section, H.

Cohemrne Longsh) required averaging over multiple realzations. To determine

the number of realizations required in the average, 50 realizations using a
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1024x1024 grid were generated for p,2 - 3 and 20 and the central 256x256

portion of the fields again used to calculate the atmospheric MTFs. These

individual MTFs were then averaged in groups of 1, 5, 10, 15, .... 50 before

calculating the coherence lengths. Figure (45) shows the resulting coherence

lengths, r.. (These particular runs used L = 150 m and X = 420 nm, giving a

Fresnel length a VAL/Ti = 10 mm and resulting in millimeter-sized

coherence lengths.) As few as 5 realizations In the average yielded coherence

lengths within 4% of the 50-realization values. These investigations still used

30 realizations in the average because these 30 fields were already available

from the normalized irradiance variance calculations.

The irradiance ratio provided an indicator of the appropriate final beam

radius to use to avoid excessive scatter of energy off the grid. The maximum

W,= for a given grid varies with the final beam radius because larger radii scatter

energy off the grid sooner and cause allasing at lower W2. To characterize this

behavior, 84x64, 128x128, and 258x256 grid simulations were run at turbulence

strengths f62 = [5xlO', 5x1002 for final beam radii of 4/8, 5/8, 6/8, and 7/8 grid

radius, and the resulting irradlance ratios (average irradiance at center divided

by average irradlance at grid radius) were plotted versus W . Figure (46)

shows the plot for the 258x256 grid. Again, the minima correspond to the onset

of peaking and occur at lower W,2 for larger final beam radius. Linear least

squares ftt of the final beam radii to these 6V2 values for the minimum
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irradiance ratios Indicates that a final beam radius of approximately 0.7 grid

radius corresponds with the 10% energy allased cutoff W2 for the grids. A final

beam of 0.7 grid radius provided the largest illuminated central region while still

meeting the 10% aliased energy criterion. To be somewhat conservative, these

investigations used a final beam radius = 0.5 grid radius to reduce further the

energy scattered off the grid.

G. PHASE SCREENS

1. Phase Scmen Generaion

VWh the sprit-step method, the effects of turbulence along the

optical path are introduced into the simulation by dividing the optical path into

steps and applying a random phase to the complex E-field at each step. As

" as the steps re small enough that geometrical optics approximately

applies, the E-field only acquires a random phase change as it propagates

across each step (Knepp, 1983). Diffraction as the field propagates across

many steps then produces the amplitude variations. The random phases are

assumed to be Gaussian distributed about a zero mean with variance

po ril to the turbulence strength C.2 and possessing spatial structure

function consistent with the assumed Kolmogorov turbulence and appropriate

inner scale. Knepp (1963) and Martin and Fltt6 (1988) describe the process

of geeating the phase screen with these characteristics, as discussed below.
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The phase scroen generation begins In the spatial frequency

domain by imposing the proper spatial structure function. An NxN grid of

complex numbers e(;,c.) is formed whose real and imaginary parts are each

Gaussian distributed random numbers with zero mean and unity standard

deviation. This e,(;,x,) represents the Fourier transform of a grid of

uncorrelated Gaussian distributed random numbers 0,(x,y) representing phases.

The proper spatial structure function corresponding to turbulence statistics is

imposed upon the random phases eO(x,y) by applying a filter A(;,rc) to

O(K*,x) - A(x,,xy,) %(x.,jy). (119)

Taking the magnitude of both sides of Eq. (119), squaring, assuming that the

filter function is real, and then taking expectation values gives

( I G(x,) I') - A'(cx,Ky) ( I e6(j,.u,) I') - A'(c.,xK), (120)

where use was made of the fact that the Gaussian random numbers e*(;,,,)

have a variance of 1. The two-dimensional power spectral density of the phase

Fs(K;,,,) Is related to e(K,,K,) by (Goodman, 1985)

Fs(xx,xy) - ( I *(,xgu,)lI ) (A%)", (121)

where AK represents the grid element size In the spatial frequency domain.

The Hankel transform of the power spectral density F,(Y.) gives the phase

structure function D,(p) that characterizes the spatial distribution of the phase

fluctuations of the E-field (Tatarski, 1961)
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OS(p) f [ 1 - J,(xp) I Fs(%,O) dr., (122)
--m

where local isotropy has been assumed. Tatarski derived the relation between

the two-dimensional power spectral density of phase fluctuations F,(;,) and

the tree-dimensional spectrum of index of refraction fluctuation, 0(•K),

Fs(%,0) - 2xk2 L *a(%c), (123)

where x - *+,12 This sequence of steps means that the phase screen

can have the proper spatial statistics by starting with the proper spectrum of

refractive Index fluctuations (hence, the proper stucture function).

The spectrum of index of refraction fluctuations assuming

Kolmogorov turbulence with inner scale is

(,z) - 0.03 C:(z) c-118 F(x#0), (124)

where F(ic) gives, the inner mscle depenenc for ine scale (see Fig. 8).

Substitutfg Eq. (124) into Eq. (123) gives the power spectral density of phase

fluctuations

F,(xz) - 2NkO L (0.033) C.'(z) ,t"O1 F(1D ), (126)

and using Eq. (121) specifies the proper form for e(;,r,), the corresponding

Fourier transform of the random phases

(leO(x,%~)I') - (Ax)' 2xk' L (0.3) C:,(z) WI'l F(vi6). (126)
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Equation (120) then gives the corresponding fifter function A(iyv) to apply to

the array of complex numbers e0(r,,Yv)

A(%,xm) - (A )-' V2xk' L (0.033) c:(z) %-I'il F(w 1). (127)

Since the Kolmogorov spectrum (cc K"•1) has a singularity at K = 0, the K--0

point in the filter function is set to zero, removing overall piston (i.e. common

phase offset over whole screen) from the phase (Cochrane, 1985) and keeping

the spectral energy finite. Conversion to a discrete grid representation occurs

by substltuting YA., = n, AK, n, = Ai Ax, K2 = (AX) (n,2 + r 2), and

Ax = 2x/(N Ax), where Ax is the grid element size in the x-y domain and (n,,n,)

are grid coordinates. The Fourier transform (FT) of the filtered array of random

variables gives the phase screen in the spatial domain

O(xy) . o.084 k rc:(z) L (N Ax)M FT[ (].j**T*)..1 00(n,,nJ (128)

Since this phase screen is actually complex-valued, both the real and imaginary

parts represent valid random phase screens that were separately applied to the

E-field (Cochrane, 1985).

2. Low Spaltl Fmquency Corection

Due to the finWte size of the grid, the above phase screen will not

have the proper structure function for separations of the order of the grid width.

Low spatial frequency components, especially tilt-type terms, are under-
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represented (Cochrane, 1985). These computer simulations incorporate an

algorithm formulated by Cochrane that employs an expansion of the phase

screen in a Karhunen-Loeve basis set (whose components are mutually

orthogonal) to correct some of the low spatial frequency terms.

The general idea of the low frequency correction builds upon the

above procedure to generate a phase screen. The low spatial frequency

contribution to the phase screen is a superposition of orthogonal low spatial

frequency terms, just like the superposition of complex exponential terms by

Fourier transform in the phase screen generation process above. The strength

of each low spatial frequency term is a Gaussian random variable with an

appropriate variance, just as the Gaussian random numbers above were filtered

to give the proper variance and thus determine the strength of the

corresponding complex exponential in the spatial domain. Thus, the two

objectives involve finding an appropriate set of orthogonal low spatial frequency

functions, and determining the corresponding variances applicable to

atmospheric turbulence.

An arbitrary function can be expanded in terms of Karhunen-

Loeve functions that are orthogonal by definition. To determine a set of

Karhunen-Loeve functions appropriate for Kolmogorov turbulence, Cochrane

builds on the work of Nol and (1975) considers expansion of an arbitrary

function #(r,9) over a circular aperture of radius R in terms of Zemike
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onomas (Born and Wolfe, 1970)

(re) Zaj1 zj (p,e), (129)

where p represents the normalized distance r/R, j are the expansion

coefficients, and Z, are the Zernike polynomials. mfth W(r/R) representing the

aperture function, the coefficents are

ej - (1IRI) fd'r W(rlR) #(r,0) Zj(rlR.0). (130)

NoN assumed that these coefficients were Gaussian random variables with zero

mean and with a covariance

a,,y) - fdp fp', W(p) w(p) Z/p,e) ( Rp) +(Rp') ) Zi•(pe').(l13 )

Fourier tasormft to the spata frequency domain

(•ajj) - ff A dr' Q;(,) #(.IR, u'IR) Q,(i). (132)

where QOft) represents the Fourier tranform of the jth Zemrke polynomial, and

4'(rJR,,elR) represents the Kolmogorov spetrum of phase fluctuatlons. NoN

analytcalily performed the integrals to give a covaladnce motx In whdi tOe

terms represent the expected covarliancs due to Kolmogorov turbulencm.

Cochrane (1985) note ta the Zernke poynomials cannot be

used to fbrm an orthogn expnsion of the pham

because the expanion coefficents ar correlated, indicated by nonzero off-
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diagonal elements in Nolls covariance matrix. However, the eigenvectors of

the Zemike covariance matrix serve as a Karhunen-Loeve basis set. These

eigenvectors KP can represent turbulence because they are not correlated, i.e.

each eigenvector K, is formed by superposition of Zemike polynomials in such

a way that the K, are orthogonal, satisfying the first objective. Additionally, the

corresponding eigenvalue A, multiplied by (D/rk* (where D is the aperture

diameter and r, is Fried's coherence length (Fried, 1965)) gives the appropriate

variance for that K, spatial component corresponding with Kolmogorov

turbulence, satistying the second objective.

Specifically, the low spatial frequency contribution to the phase

screen can be expanded in terms of these Karhunen-Loeve components K,

(Cochrane, 1985)

EZ ' y,,(-)r (133)OW* - 0, 12
p-1

where p,. represents the number of low spatial frequency Karbunen-Loeve

terms WIncldd and the coefftients y are Gausmian random numbers with

variance X, and scaled by (OArj" to the specific srngth of tuft•once used.

The simulMa use the firstve mterms ( p.. a 5 ) as a compromise between

completenoss of low spatial Requency correction and computional efficncy.
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Figure (47) shows a surface plot of one realization of the first two terms of the

correction, which are very close to x- and y-tilt (i.e. phase terms linear in x and

y, respectively). Figure (48) shows a realization of the 3rd, 4th, and 5th

correction terms, which resemble the wavefront aberrations associated with

defocussing and astigmatism in a conventional imaging system. To implement

the low spatial frequency phase correction, (1) the scalar product was formed

between the initial Fourier transform phase screen and each Karhunen-Loeve

function K,, jiving the relative strength of that KP in the initial phase screen; (2)

this amount of each spatial component K, was then subtracted from the phase

screen; and (3) the K, component was then added back to the phase screen in

the proper amount given by the product of a Gaussian random number Y. with

variance X, and the factor (D/ro)5n to scale to the particular strength of

turbulence used.

Cochrane's computer routines only calculate the Karhunen-Loeve

correction terms over tho largest circle that fits inside the calculation grid, as

shown in Figs. (47) and (48). Correction of the E-field over the entire computer

simulation grid requires the Karhunen-Loeve terms be calculated over an area

that is at least V'7 larger on each side than the field grid (Cochrane, 1985). If

the E-fleld grid size N is chosen as a power of 2, then the Karhunen-Loeve grid

must be 2Nx2N These simulations however used only an NxN grid

(1024x1024) because the Sun SparcStations could not handle the memory
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requirements of the doubled grid (2048x2048) without a major revision of the

propagation code. Since the source function was chosen to minimize energy

scattered off the grid, very little energy fell in the uncorrected comers of the grid

and the simulation remained valid.

Nolls covarlance matrix assumes Kolmogorov turbulence

spectrum with zero inner scale making the Karhunen-Loeve correction terms

strictly apply only to this spectrum. These simulations however incorporate

nonzero inner scales into the spectrum of refractive index fluctuations.

Because the first five Karhunen-Loeve terms cover scale sizes on the order of

the grid width, which is much larger than the inner scale size 16, the Karhunen-

Loeve correction terms derived for zero inner scale remain valid for correcting

nonzero inner scale phase screens.

Cochrane (1985) showed that such low spatial frequency

correction greatly improved the phase structure function. Two terms corrected

the structure function to within 10% of the theoretical Kolmogorov behavior, and

five terms corrected to within 5%, compared with 30 - 1000% discrepancies

without any correction at low spatial frequencies. Figure (49) plots the

normalized irradiance variances from computer simulations as a function of p2

for zero Karhunen-Loeve low frequency correction, two-term correction, and

five-term correction. Zero correction underestimated the irradiance variance in

the Rytov regime by approximately 5%, and the two-term til-type correction also
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Figure 49 Normalized irradlance variance, normalized by pO2, versus
turbulence strength for zero (dotted), two-term (dashed), and five-term (solid)
Karhunen-Loeve low spatial frequency corrections to phase screens.
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underestimated by about 5%. The five-term correction with its focussing type

terms raised the variance to within about 2% of the theoretical variance. In the

saturation regime, the two- and five-term corrections fit better. Figure (50) plots

the coherence length ro, normalized by the theoretical coherence length, as a

function of turbulence strength for zero, two-, and five-term Karhunen-Loeve low

spatial frequency corrections. In the Rytov regime where simulation should

closely approximate theory, the zero correction overestimated the coherence

length by approximately 35%. The tilt-type correction (two terms) estimated the

coherence length within about 5%, and the five-term correction achieved

agreement within about 2%. These behaviors formed the guideline that some

type of low spatial frequency correction was required to achieve valid

coherence lengths from computer simulation.

This low spatial frequency correction method remained

computationally feasible because the Noll covariance matrix only needed to be

calculated once and because only a few terms of the Karhunen-Loeve

expansion were used. However, the code can become memory intensive

because it saves a full NxN grid for each Karhunen-Loeve function in addition

to the NxN phase screen itself. Implementation with 2048x2048 or larger grids

becomes problematical except on very large computers with about one gigabyte

of RAM. Fried(1993) has proposed a simpler x- and y-tilt correction algorithm

and indicates that this performs almost as well as including the higher order
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Karhunen-Loeve terms, while being less memory intensive and faster than the

Karhunen-Loeve correction method. Figs. (49) and (50) indicate that the tilt-

only correction may systematically underestimate the normalized irradiance

variance by about 5% and overestimate the coherence length of a spherically

diverging wave by about 5% in the Rytov regime. Depending on the

application, the Karhunen-Loeve correction to higher order terms may prove a

useful refinement.

H. COHERENCE LENGTH

The coherence length of the E-field was calculated from the atmospheric

MTF with the theory outlined in Chapter II, but the actual implementation of the

MTF calculation and parameterization of the coherence length ro required

careful consideration. The calculation methods that worked best for these

investigations are discussed in this section.

Equation (60) of Chapter II relates the atmospheric MTF and the

spherical wave structure function to the coherence properties of the E-field

MT14) 9 ( () . (134)MT~m : e-i o(•)(W( Q') u(1"+r')))

Again, U(?) represents the E-field and W(?) represents the aperture function.

The autocorrelations of U and W indicated in Eq. (134) could be done by
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summing the complex products of the E-fields over multiple pairs of points or by

implementing the autocorrelation via FFT techniques. Both versions were tried

for these investigations and produced similar results, but the FFT version

provided a much more thorough autocorrelation with greater computational

efficiency.

The FFT autocorrelation technique used the MCF introduced earlier.

Equation (57) defined the mutual coherence function as

MCF z ( U(P,,t1 ) U( 2 ,t2) ), (135)

which, for a single time t, = t2 = t and assuming homogeneity, may be written

as the spatial autocorrelation of the E-field

MCF(P") = f ' ua(r) U(P + P"). (136)

Substituting Eq. (136) into the Fourier transform identity,

MCF(P') = f Of (f dI'" MCF(t") e-''2" ] ' (137)

gives

MCF(P') = f of [ f dt If of( U-(4) U(p4"l) I •-J' j" 1+÷i 3 M (138)

Rearranging the integrations,

MCF(?') f f of [ f d? u'(r) I f 0"1 U(P+Pl?) e"I'xf.tP ]] e12zl'. (139)

Changing variables to S + P, ?" - A - P, o" -= di,
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MCF(1) - f df C U'(?) I f d U(S) *-Ihu'* ie?' j *.lts?'. (140)

The inner integral is the Fourier transform of U(O) and is denoted by FIT[ U .

The next innermost integral is the inverse Fourier transform of U'(P) and is

denoted by IFT[ U" ). Then,

MCF(Pr) = f d FT[ U ) IFT! U" I o.÷2*?'., (141)

which is yet another inverse Fourier transform, symbolically written

MCF(P) -IFT[ FT[(I IFT[U*' 1. (142)

Equation (142) expresses the autocorrelation (MCF) of the E-field in terms of

Fourier transform techniques easily implemented with discrete Fourier

transforms.

This Fourier transform method of calculating the autocorrelation of a

function is faster and more complete than the more laborious technique of

averaging the products of the E-fleld at point pairs. The product E*( ? )E(Q. ) is

complex, but because of the averaging that occurs in the autocorrelation, the

real part attains a stable value while the imaginary part averages toward zero.

For the FFT implementation on a 1024x1024 grid, the imaginary part is typically

-10"e while the real part ranges between 0 and numbers on the order of unity.

The point pairs technique produces an equivalent real part but reduces the

imaginary part down to only -10-3. These investigations used the FFT version for

all autocorrelations. Additionally, the autocorrelations were normalized by their
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zero lag values to ensure that the magnitude of the MTF calculated by

Eq. (134) lies between 0 and 1.

Because the spherical wave structure function refers to points across a

spherical wavefront, U and W must similarly represent the E-field across a

spherical surface. However, the computer simulation implements the E-field on

a plane perpendicular to the axis of propagation and incorporates the spherical

wave nature of the E-field by applying a quadratic phase curvature across the

plane. To convert from this plane representation of the E-field in the simulation

to a spherical surface representation appropriate for the autocorrelation

calculations of Eq. (134), the quadratic phase factor across the plane must be

removed from the E-field. This effectively assumes that the amplitude and the

phase fluctuations of the E-field across the plane of the computational grid

closely approximate the E-field across the spherical wave. This assumption is

justified because the maximum physical separation of the true spherical

reference surface from the plane surface of the grid is at most 1/50 the

coherence length of the E-field. However, the removal of the quadratic phase

curvature from the E-field of the grid proves crucial to the autocorrelation of U

because the quadratic phase factor undergoes -130 multiples of 2n phase

change between the center and the outer edge of the grid for these simulations

and would otherwise completely obscure the actual E-field fluctuations.
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Propagation with a plane or beam wave requires a different approach to

remove the proper amount of phase curvature. For a plane wave, the

wavefront coincides with the plane of the grid so that no phase curvature needs

to be removed. A pure beam wave (Gaussian profile) exhibits a spherical

phase with a radius of curvature larger than the propagation distance L, and

this phase could be calculated analytically and removed. However, the use of a

finite E-field confined to the propagation grid introduces phase effects other

than simple quadratic curvature. Fortunately, the E-field propagated through

zero turbulence contains this phase curvature information (Walters, 1994). For

spherical wave propagations, the removal of the phase curvature by the

analytical calculation and by using the zero turbulence propagated field

provided identical coherence lengths. These investigations used the latter

method for the coherence length calculations for all beam-like and plane-wave-

like propagations.

Equation (134) requires that the autocorrelation of U must be averaged

over multiple realizations to achieve the long exposure MTF. To implement this

requirement, the autocorrelations from several realizations were calculated and

averaged together, and a coherence length then determined via Eq. (134). This

method produced coherence lengths that agreed with theory within -5% in the

Rytov regime. Recalling Fig. (45) for the coherence length versus number of

realizations used in the average, the number of fields included in the MTF
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average may be as few as 5, though 20 provided a more statistically

reproducible coherence length. Again, these simulations used 30 realizations

because these fields had already been generated for the normalized irradiance

variance calculations.

Figure (51) plots the coherence lengths calculated from the average MTF

and also plots the average of coherence lengths calculated with single

realization MTF's. The average of individual realization coherence lengths

exceeded the averaged MTF coherence length by -20% at low turbulence

strengths but eventually agreed within 5% near the saturation regime. The

single realization MTF's showed a larger coherence length at low turbulence

strengths because the contributions frcm low spatial frequency components had

not been reduced through averaging. At these low turbulence strengths,

multiple realizations were required to average these low spatial frequency

contributions and to achieve the appropriate long exposure MTF. At higher

turbulence strengths near saturation, the E-field had more energy at high spatial

frequencies that dominated the MTF. The autocorrelation for a single

realization now averaged over many coherence lengths and yielded an MTF

close to the average MTF for multiple realizations.

Using a finite beam to approximate a spherically diverging wave

produced a radial dependence of the average irradiance that affected the

coherence length calculation, but only to a small degree. To compensate for
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this radial dependence, each E-field was divided by the radial average E-field

magnitude from the 30 realizations. Similar to the irradiance variance

calculation, this average E-field was calculated by dividing the grid into rings

one grid element wide, taking the square root of the average intensity for each

ring over the 30 realizations, and then performing an area weighted, running

mean across the rings to smooth the variations. While this radial compensation

proved essential for the normalized irradiance variance calculation, it only

changed the coherence length by -1%, which was significantly less than the -5%

discrepancy from the low spatial frequency correction.

The above considerations allowed calculation of the right-hand side of

Eq. (134) for the atmospheric MTF. Because of the statistical nature of the

propagation through turbulence, no set of realizations yielded an atmospheric

MTF that exactly followed the exponential rolloff with distance predicted by the

left-hand side of Eq. (134). Methods had to be developed to parameterize

these atmospheric MTF's from the simulations and extract an appropriate

coherence length corresponding to the structure function D(r).

For the case of Kolmogorov turbulence, Fried (1966, p. 1380-1383)

derived the wave structure function and expressed it in terms of the single

coherence length parameter r.

D(r) -688 (143)
1r2
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where n = 5/3. The atmospheric MTF then becomes

- 44 (.) (144)
MTFe - e

To extract the coherence length r. and the exponent n (allowing the possibility

that n may vary), take the natural logarithm of both sides and rearrange

(Walters, 1993)

I lnA(MTF,,(r) r (146)

Taking the natural logarithm again,

bi( - 1 ln((MTF (r))) n hI(r) - n l(ro). (146)
3."4

This has the linear form y = ax + b, where y represents the left hand side,

a = n, x = In(r), and b = -n ln(rt). The atmospheric MTF can now be

characterized with two parameters, r. and n, or just the single parameter r.

assuming n a 5/3.

To implement these parameterizatons, the atmospheric MTF was first

calculated from the E-field using the autocorrelation methods above and then

radially averaged to yield MTF,,(r) for use in Eq. (146). A linear least

squares fit calculation provided the slope a = n and the Intercept n ln(r), giving

r.. To obtain the single parameter characterization, n was set to 5/3 in
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Eq. (146) and least squares techniques applied to obtain the intercept and thus

the single parameter ro.

Figure (52) shows the coherence lengths calculated with these least

squares methods, divided by the Rytov theory coherence length for Kolmogorov

turbulence. The two parameter characterization with both exponent n and

coherence length ro never provided a consistent, smoothly varying coherence

length. At low turbulence strengths in the Rytov regime where the E-field

coherence length is larger than the calculation aperture, the two parameter fit

predicted coherence lengths up to 50% higher than the theoretical value and

thus appears unreliable. Additionally, it showed an anomalous bump around

-2 - 0.5 . The single parameter least squares technique with n = 5/3

accurately characterized the coherence length within 5% at low turbulence

strength, but still showed the bump at 02 - 0.5

An alternate technique to obtain a single parameter characterization

assumed n = 5/3 in Eq. (144) and used a binary-type search, or iterative fit, to

find the coherence length r. that minimized the variance between the average

MTF,,,(r) and the right-hand side of Eq. (144). Though not analytical, the

resulting ro gave an MTF that often fit the actual MTF . (r) more closely by eye

than the least squares methods, especially for low turbulence where coherence

lengths were larger than the grid size. To implement the technique, an initial

large range of ro (for example, 0 to 100 m) was divided in half, the midpoint ro6s
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of each half were substituted into Eq. (144), and the variances were calculated.

Whichever ro provided the least variance became the middle of the next range,

and the other ro became the new high or low boundary. The process was then

repeated, so that each iteration reduced the range of possible ro by 1/3. This

procedure was iterated 100 times or until the variance was less than lx1O07.

Figure (52) shows the coherence lengths predicted by this iterative fit

method along with the coherence lengths from the one- and two-parameter

least squares fits, all divided by the Rytov theory coherence length for

Kolmogorov turbulence. The iterative fit coherence length was -5% too large at

low turbulence but did not show the anomalous bump around p302 - 0.5.

In the saturation regime where turbulence is high and/or path lengths are

long, multiple scattering becomes significant and saturates the irradiance

variance (Martin and Flatt6, 1988). Correspondingly, this physical phenomenon

may also affect the coherence length and modify the value of n or the form of

Eq. (144) for the saturation regime. The half width at half maximum (HWHM)

provided a coarser, one parameter method of characterizing the atmospheric

MTF that did not depend on any assumptions about the form of the structure

function and could be calculated directly from the atmospheric MTF by linearly

interpolating between the pair of points bounding MTF,,,.(r) = 1/2. Figure (52)

plots the HWHM, divided by the HWHM predicted by Rytov theory assuming

Kolmogorov turbulence. The HWHM plot starts at p0o2 = 0.05 because lower
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turbulence strengths gave a coherence large enough that the MTFm,(r) had

not reached half its maximum value within the calculation region. The HWHM

lengths followed the theoretical values within 5% in the Rytov regime and did

not show the anomalous bump around W. - 0.5. Note that the iterative fit

coherence lengths agreed with the HWHM plot better than the least squares

techniques. The HWHM and iterative fit r. proved to be the most stable

parameterizations of the E-field coherence length, and were used in all

subsequent coherence length comparisons and plots.

Other factors were also considered in the coherence length calculation.

As stated earlier, some choices for point source, such as the Airy-type source

required more energy at high spatial frequencies than others, such as a narrow

Gaussian. While this difference produced < 2% effect in the normalized

irradiance variance calculations, it appeared to have more effect on coherence

length calculations. Figure (53) shows that an Airy-type source produced

coherence lengths up to 10% higher at low turbulence strengths than those

from the Gaussian-type source of Eq. (109). Therefore, only the latter type

source was used for further investigations.

For an arbitrary spectrum of refractive index fluctuations Ojic,z), the

integral formulation Eq. (61) provided the wave structure function for the

atmospheric MTF in Eq. (134). Specifically, numerical integration of Eq. (61) for

the spectra with grid cutoff, Gaussian, and Hill/Frehlich viscous convective
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enhancement inner scales allowed comparison of theory (Eq. (134)) and the

simulation MTF,(r) (described in Chapter IV). However, in the structure

function numerical integration, care had to be exercised in properly treating the

low spatial frequency portion of the integrand since the spectra contained a

K"1r4 singularity as K approached zero. This low frequency portion was critical

to obtain coherence lengths that approached the Kolmogorov theoretical values

in the Rytov regime. The integral was successfully evaluated by integrating

analytically for 0 < K ,,, , ( where K,,, - Ix104 m"1 ) (Walters, 1994) since the

inner scale function F(xQo) = I here and this portion of the spectrum remains

Kolmogorov. The remaining portion of the integral that contained the inner

scale contribution was carried out numerically. More realistic spectra could also

have included an outer scale, but again no universal form of outer scale exists

due to anisotropy of the atmosphere at large scale sizes. When included in the

numerical integrations for test purposes, an outer scale raised the coherence

length compared to the Kolmogorov case. However, these investigations did

not use an explicit outer scale in the simulations.
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IV. RESULTS

A. NORMALIZED IRRADIANCE VARIANCE

The computer simulation guidelines and considerations discussed in

Chapter III were implemented to investigate the behavior of the normalized

irradiance variance and E-field coherence length in the Rytov and saturation

regimes for the grid cutoff, Gaussian, and Hill/Frehlich viscous-convective

enhancement inner scales. Specifically, the simulations apply to stratospheric

propagation with propagation distance L = 200 kin, wavelength ). = 500 nm,

strengths of turbulence pO2 = [5x10"4, 50), and Inner scale sizes [0, 15] cm.

The simulations used a 1024x1024 grid with grid element size given by Eq.

(92), an Airy-type source modified to produce a final zero turbulence irradiance

pattern with edges apodized by a Gaussian (Eq. (109)) and width corresponding

to half the grid width, 32 phase screens utilizing a five-term Karhunen-Loeve

low spatial frequency correction, and 30 realizations in each set of runs. The

central 256x256 portion of each propagated E-field was used for the normalized

irradlance variance and coherence length calculations.

For the Gaussian inner scale values of 0 (grid cutoff), 5, 10, and 15 cm,

Fig. (54) plots the normalized irradiance variance versus turbulence strength 0ý2

in the Rytov regime from both numerical integration of the equation from Rytov-

Tatarski t#ery, Eq. (34) (dotted lines), and from computer simulations
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(solid lines). All values are normalized by P*. Numerical integration values

for 0 cm inner scale agreed within 1% of the theoretical zero inner scale values.

The difference resulted because the numerical integration was limited to spatial

frequencies below the grid cutoff x,,. Larger grid cutoff values gave closer

agreement. The simulation normalized irradiance variances agreed within 2%

of the numerical integration values for all four inner scale values examined.

Nonzero Gaussian inner scales reduced the normalized irradiance variance

below the zero inner scale value (by 10%, 25%, and 40% for the 5, 10, 15 cm

cases, respectively). Intuitively, the finite inner scale suppressed the higher

spatial frequency index of refraction fluctuations and thus reduced the variance.

Figure (55) plots the normalized irradiance variance (divided by N2) for

the single turbulence strength p32 = 5x1 0 and Gaussian inner scale sizes of 0

(grid cutoff), 5, 10, and 15 cm. The numerical integration values (dotted line)

and computer simulation values (solid line) showed an almost linear decrease

of the normalized irradiance variance with increasing inner scale size in the

Rytov regime. As Flatt•, Wang, and Martin (1993) point out, the Gaussian

inner scale does not accurately describe the inner scale observed in the

atmosphere but retains usefulness because it facilitates some theoretical

calculations.

For the Hill viscous-convective enhancement inner scale sizes of 0 (grid

cutoff), 5, 10, and 15 cm, Fig. (56) plots the normalized irradiance variance in
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the Rytov regime versus turbulence strength f3. Numerical integration of the

Rytov-Tatarski theory, Eq. (34) (dotted lines), and computer simulation (solid

lines) agreed within 2%. For the smaller inner scales, the normalized irradiance

variance exceeded the zero inner scale values (by 30% for the 5 cm case).

The viscous-convective enhancement of the strength of higher spatial

wavenumber fluctuations near the inner scale wavenumber increased the

variance. Yet, for large enough inner scale, the rolloff beyond the enhancement

suppressed the higher spatial frequency fluctuations enough to eventually

reduce the variance below the zero inner scale variance (by 30% for the 15 cm

case). The 10 cm values happened to lie within 1% of the 0 cm values.

Figure (57) plots the normalized irradiance variance (divided by p0
2) for

the single turbulence strength W~, = 5x104 and the Hill viscous-convective

enhancement inner scale sizes of 0 (grid cutoff), 2, 3, 4, 5, 6, 7, 10, and 15 cm.

Numerical integration of the Rytov-Tatarski results (dotted line) and computer

simulation (solid line) clearly illustrated the rising and then falling behavior of

the normalized irradiance variance with increasing inner scale size in the Rytov

regime. The normalized irradiance variance achieved a maximum for to - 4 cm,

which was about 30% of the Fresnel length RF a VA'L-/-2W = 12.6 cm.

The dashed line in Fig. (57) shows simulation values using the Frehlich

parameterization of the viscous-convective enhancement inner scale. The

Frehlich inner scale shifted the plot slightly to smaller inner scale sizes,
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maximized at 2% less than the Hill maximum, and matched the Hill values

within 3% over the range of inner scale plotted. Additionally, simulation runs

using 4 cm Hill and Frehlich inner scales agreed within 3% over the range of

turbulence strengths 5x10 4 < 12 < 50. Thus, the Hill and Frehlich versions

of the viscous-convective enhancement inner scale perform almost identically.

Previous investigations have illustrated the dramatic monotonic rise in

normalized irradiance variance in the saturation regime as the inner scale size

increases (Martin and Flatt6, 1988). Figure (58) shows normalized irradiance

variance from computer simulations for 0 (grid cutoff), 5, 10, and 15 cm

Gaussian inner scales and a propagation path of 200 km. Figure (59) shows a

corresponding plot for 0 (grid cutoff), 5, 10, and 15 cm Hill inner scales. The

turbulence values range from the Rytov regime (low turbulence with 1O2 < 1) to

the saturation regime (high turbulence, g2 > 1 ). The Rytov regime showed

again the behaviors illustrated with Figs. (54) - (57). Increasing Gaussian inner

scale size produced monotonically decreasing normalized irradiance variance.

Martin and Flatt (1988, 1990) provided similar plots of normalized irradiance

variance with a Gaussian inner scale. The Hill viscous-convective

enhancement caused the normalized irradiance variance to rise and then fall as

the inner scale size increased. However, in the saturation regime, the

normalized irradiance variance increased monotonically with increasing inner

scale size for both the Gaussian and Hill inner scales. The transition in
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behavior occurred with the onset of saturation around I2 - I. This crossing

behavior has been plotted for the log intensity variance with the viscous-

convective inner scale by Hill and Clifford (1978).

Figures (54) - (57) illustrate the close agreement between numerical

integration and computer simulation values for the normalized irradiance

variance at low strengths of turbulence. This agreement provided a validity

check on these computer simulations that incorporated an inner scale.

EL COHERENCE LENGTH

Coherence lengths of the E-field were calculated from the same

1024x1024 simulation runs used for the normalized irradiance variance

calculation. The average atmospheric MTF was formed from 30 realizations

using the FFT autocorrelation method, and then the corresponding coherence

length ro and HWHM were calculated. The iterative fit r.'s were used for

comparisons because they most closely followed the HWHM behavior. The

HWHM may provide the coarsest measure of coherence length but, since it

requires no assumptions about the form of the MTF, it may also be the most

reliable.

Figure (60) shows the coherence length r. from numerical integration of

Eq. (61) for an approximately zero inner scale and normalized by the theoretical
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Kolmogorov turbulence zero Inner scale coherence length r. of Eq. (66). This

plot indicates that the numerical integration coherence lengths calculated in

these investigations were accurate within 2%.

Figure (61) shows the coherence length ro from numerical integration of

Eq. (61) with the grid cutoff ic,,, = 318 rad/m for the 1024x1024 grid. The grid

cutoff did not affect the coherence length until ý2 ow 1.5. Above that level of

turbulence, the absence of the very high spatial frequency contribution to the

integral caused the coherence length to become larger than the theoretical zero

inner scale value. The grid cutoff inner scale implicit in the computer

simulations with the finite grid should have a similar effect at these high

turbulence values.

Figure (62) shows the coherence length ro, normalized by the theoretical

coherence length, from computer simulation of a spherically diverging E-field.

In the Rytov regime, the simulation agreed with theory to within the -5%

overestimation due to using only five terms in the Karhunen-Loeve low spatial

frequency correction to the phase screens (see Fig. (50)). In the saturation

rc ime, the simulation coherence length (solid line) dropped below the

theoretical prediction (by -25% at po2 = 50) and the HWHM (dotted line) mirrored

this decrease. For strong turbulence, the first order perturbation theory basis

for coherence length appears to lose validity, as it did for the normalized

irradiance variance in the saturation regime.
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Fgur 61 Coherence length from numerical integration for grid cutoff inner
scale versus turbulence strength. Values normalized by Kolmogorov turbulence
zero inner scale coherence length.
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F"gr 62 Coherence length r. (solid line) and HWHM (dotted line) for
spherical wave propagation through turbulence (Values normalized by
theoretical coherence lengths).
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The drop in coherence length presumably came from strong scattering in

high turbulence, but a possible origin in the computer simulation was also

considered. The simulations started wYA,, an approximate point source to

emulate spherical divergence of the E-field and required the E-field to remain

basically confined within the simulation grid over the propagation. The resulting

E-field properties could have differed from those of a true spherical wave. To

investigate this possibility, the width of the final irradiance pattern was varied

such that wider final irradiance fields (hence narrower sources) more closely

approximated a true point source. Figure (63) plots the results and shows that

increasing the final irradiance width (diamond, then triangle, then square, then

X) actually lowered the coherence length in the saturation regime while still

following the theory in the Rytov regime. This behavior indicated that the

observed decrease in the saturation regime was physical and not due to

simulation constraints.

To further investigate this phenomenon, beam wave (i.e. divergence

intermediate between spherical and plane waves) and plane wave

approximations were propagated on a 512x512 grid in which the width of the

source varied from 4 grid elements (Ax) to 384 grid elements (3/4 of the grid

width). Figure (64) plots the resulting coherence lengths and indicates that,

based on the behavior in the Rytov regime, the 4 Ax source (circles) produced

the spherical wave having large divergence of the E-field, the intermediate
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Figure 63 Coherence lengths r. for varying amounts of spherical divergence,
hence final irradiance pattern width: diamond = 4/8, triangle = 5/8, square = 6/8,
X = 7/8 grid width.
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Fig"r 64 Coherence lengths for increasing source width on a 512x512 grid:
circles=4Ax (spherical wave); X's=8Ax, squares=16Ax, triangles=32Ax,
diamonds---64Ax, dots=128Ax, asterisks=258Ax, pluses=384Ax (plane wave).
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source sizes (X=8 Ax, square = 16 Ax, triangle = 32 Ax, diamond =84 Ax)

produced beam wave divergences, and wide sources (dot = 128 Ax, asterisk =

256 Ax, plus = 384 Ax) produced plane waves.

However, as the turbulence strength approached the saturation regime,

the behaviors changed. The spherical-type propagation coherence length

dropped -15% at W2 = 15, the beam wave propagations actually increased in

coherence length, and the plane wave propagations first decreased -5% before

increasing -15% at 32 = 15. Some of the unevenness in the beam wave

coherence lengths occurred because smaller regions of the E-field were used to

calculated the coherence lengths due to the relatively small size and divergence

of these waves.

The cause of these behaviors requires further investigation, but a

hypothesis can be made. As noted earlier, the spherical wave coherence

length probably decreased below theory for strong turbulence where the Rytov-

Tatarski first order perturbation theory was no longer valid. Strong scattering

may have induced spherical divergence of the beam waves, increasing the

coherence length, and caused the plane wave approximations to diverge like

beam waves for high turbulence.

Recapping the above results, investigations of coherence length via

computer simulation indicated that first order perturbation theory for coherence

lengths loses validity in the saturation regime, just as -it did for normalized
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irradiance variance. The behavior of coherence length in the saturation regime

for spherical, beam, and plane wave cases requires further research.

These investigations then examined the effect of inner scale upon

coherence length for a spherically diverging beam, utilizing the 1024x1024

realizations run for the normalized irradiance variance calculations. Figure (65)

shows the coherence length r. from numerical integration of Eq. (61) for

Gaussian inner scales of 5, 10, and 15 cm. The Gaussian inner scale made

the coherence lengths larger by reducing the energy at high spatial frequencies.

Larger inner scales monotonically produced larger coherence lengths from

numerical integration at a given turbulence strength (-8% larger at p0
2 = 1

(beginning of saturation regime) for so = 15 cm). A plot of HWHM from

numerical integration for Gaussian inner scales would appear similar since the

theoretical HWHM is proportional to the Kolmogorov coherence length ro

hWHM = 0.382 r0. (147)

Figure (66) shows the coherence length r. and Fig. (67) shows the

HWHM from wave optics computer simulations with Gaussian inner scales of 5,

10, and 15 cm (solid lines), superimposed upon the numerical integration

predictions of Fig. (65) (dotted lines). The r. and HWHM simulation values

agreed well with theory for 13o2 < 0.1, but started deviating frc.,i theory even

before N02 = 1, i.e. the onset of saturation for the normalized irradiance

variance. In the saturation regime, computer simulation ro and HWHM still
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F"gr 65 Coherence length ro from numerical integration for Gaussian inner
scales of 5, 10, and 15 cm, normalized by the theoretical zero inner scale
coherence lengths.
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Figure 66 Coherence lengths r0 from computer simulation with Gaussian inner
scales of 5, 10, and 15 cm; values normalized by the theoretical zero inner
scale coherence lengths.

158

• ' , ~~~I.I



2.0 ..... ""l ........ i...... "'• "•........ I........

2.0 .u *i'U ' W;

dotted lines - num. integration HWHM. GAUSSIAN inner scale

solid lines - simulation HWHM, GAUSSIAN inner scale

1.5- A

I
* 1 .0 -4-

S0.5 Plus"e ine- caeo- crm

S~diamonds - inner scale of 5 cm

triangle* -Inner scale of 10 ern

squares ,-, inner scale of 15 cm

0.0 , a a , ,, . . ... A ,iia a a, ,, A, iilki . a, ,,,,I . . .. a ,,I filial a,,igt
0.0001 0.0010 0.0100 0.1000 1.0000 10.0000 100.0000

Beta squared

Figure 67 HWHM's from computer simulation with Gaussian inner scales of 5,
10, and 15 cm; values normalized by the theoretical zero inner scale HWHM's.

159

I- i I I i



agreed well with each other, and their behavior showed a combination of

decrease in coherence length due to saturation regime turbulence and increase

in coherence length due to inner scale.

To elucidate the effects of inner scale by itself, Figs. (68) and (69) show

the same plots of computer simulation coherence length r. and HWHM, but now

normalized by the computer simulation zero inner scale ro and HWHM values,

respectively, effectively removinW ,,, . ,aturation contribution. These plots

clearly show that, even in the saturation regime, inner scale increased the

coherence length (solid lines) similarly to the predictions of theory (dotted lines).

The next set of figures plots coherence length and HWHM for

propagations through turbulence with the Hill viscous-convective enhancement

inner scale. Figure (70) plots the predicted coherence lengths from numerical

integration of Eq. (61). Note that the numerical integration coherence lengths

dropped -5% in the range p102 = [0.1, 1] before increasing for higher turbulence

strength. Figures (71) and (72) plot the computer simulation coherence lengths

ro and HWHM, normalized by the theoretical values for spherical waves. In the

Rytov regime, the coherence length ro decreased (-5% for f. = 15 cm) even for

very low turbulence (0302 < 0.1)z, but then increased in the saturation regime as

for the Gaussian inner scale. Figures (73) and (74) plot the same coherence

lengths r. and HWHM's but divided by the zero inner scale computer simulation

values to emphasize the effect of inner scale. Figure (73) clearly shows the
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small decrease in coherence length r. in the Rytov regime, and both plots show

the general agreement between theory and computer simulation for the effect of

inner scale upon coherence length in the saturation regime. In summary, the

inner scale increased the coherence length in the saturation regime as much as

50% compared to the zero inner scale case, and more than compensated for

the decrease from strong scatter.
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Figure 68 Coherence lengths r0 from computer simulation for Gaussian inner
scales of 5, 10, and 15 cm; values normalized by computer simulation zero
inner scale r0.
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Figure 69 HWHM's from computer simulation with Gaussian inner scales of 5,
10, and 15 cm; valued normalized by computer simulation zero inner scale
HWHM's.

163



2.0 . ....... * . ...... " ..... hI . .. .

numerical integration ro. HILL inner scale

a
0

S

CP

S1.5-

£

e 1.0 -

0.5 diamonds - inner scale of 5 cm

8triangles inner scale of 10 cm

squares - inner scale of 15 cm

0.0 . 1 .. u I . , ,, ,.J ]k a ,a ImaiI , , .2Monti a a, a. ... a a

0.0001 0.0010 0.0100 0.1000 1.0000 10.0000 100.0000
Beto squared

Flgum 70 Coherence length ro from numerical integration for Hill viscous-
convective enhancement inner scales of 5, 10, and 15 cm, normalized by the
theoretical zero inner scale coherence length.
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Figure 71 Coherence lengths r. from computer simulation with Hill viscous-
convective enhancement inner scales of 5, 10, and 15 cm; values normalized
by the theoretical zero inner scale coherence lengths.
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Fl•g•u 72 HWHM's from computer simulation with Hill viscous-convective
enhancement inner scales of 5, 10, and 15 cm; values normalized by the
theoretical zero inner scale HWHM's.
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Figure 73 Coherence lengths r. from computer simulation for Hill viscous-
convective enhancement inner scales of 5, 10, and 15 cm; values normalized
by computer simulation zero inner scale ro.
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Figure 74 HWHM's from computer simulation with Hill viscous-convective
enhancement inner scales of 5, 10, and 15 cm; valued normalized by computer
simulation zero inner scale HWHM's.
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V. CONCLUSIONS

Variations in the index of refraction within a turbulent medium alter an

E-field propagating through the medium. The Rytov-Tatarski, perturbation

theory predicts the effects of the turbulence upon the irradiance statistics and

coherence length of the propagating E-field. Computer simulations modeled the

propagation of the E-field through the turbulent medium, producing irradiance

and coherence statistics to compare with theoretical results.

These investigations used a split-step, Huygens-Fresnel, wave optics,

computer simulation to model an E-field propagating through a turbulent

stratosphere. The limits of validity of the simulations were determined based

upon aliasing considerations, choice of source, and robustness of statistical

calculations, and produced the following guidelines:

"* The element size for an NxN grid should satisfy Ax = vX7T / .

"* The maximum turbulence strength for which an NxN grid produces valid
E-fields is given by MW2 s 0.1 N 0.o

"* A coherence length r. w 2.5 Ax corresponds to the maximum turbulence
strength for which an NxN grid produces valid E-fields.

"• The number of phase screens should be a 30.

"* The number of realizations should be a 30.

"* Low spatial frequency corrections to phase screens improve the accuracy
of the normalized irradiance variance by 5% and of the E-field coherence
length by 30%.
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"* Half width at half maximum of the atmospheric MTF and an Iterative fit ro
provide the most stable parameterizations of the E-field coherence length.

"* Telltale signs of aliasing include a fine-grained irradiance pattern, a boxed
perimeter of the irradiance pattern, and peaking of energy toward the
center of the computation grid.

This research investigated the effect of (1) zero inner scale, (2) Gaussian

inner scale, (3) Hill's and (4) Frehlich's viscous-convective enhancement inner

scales, and (5) grid cutoff inner scale on the normalized irradiance variance of a

spherical wave propagating through a turbulent medium. For the Rytov regime,

the normalized irradiance variances with grid cutoff, Gaussian, and Hill/Frehlich

viscous-convective enhancement inner scales were compared to the zero inner

scale case and to the values from numerical integration of the Rytov-Tatarski

predictions. For low turbulence strengths, the variances obtained from the

simulations agreed within 2% of the values from the numerical integrations.

The grid cutoff inner scale, implicit in discrete grid wave optics computer

simulations, affected the variance negligibly compared to a true zero inner scale

at low turbulence strengths with the large 1024x1024 grid. Application of a

Gaussian inner scale reduced the normalized irradiance variance as much as

40% for small N2 compared to the zero inner scale case. The more realistic

Hill viscous-convective enhancement inner scale raised the normalized

irradiance variance by up to 30% for smaller inner scale values, but for larger

values of inner scale eventually reduced the variance below the zero inner
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scale value as much as 30%. The latter contrasted with the behavior in the

saturation regime (>3o2 > 1) where larger inner scales continually enhanced the

normalized irradiance variance. The Frehlich parameterization of the viscous-

convective enhancement gave normalized irradiance values that agreed within

3% of the Hill inner scale values over the entire range of turbulence strengths

investigated.

The coherence of the E-field was studied by computing the average

atmospheric MTF from the propagated fields. Parameterizing the MTF with a

coherence length ro and half width at half max (HWHM) allowed comparison of

the coherence length of the E-field with the predicted coherence length from the

Rytov-Tatarski-Fried theory. In the Rytov regime, simulation coherence lengths

and HWHM's for spherical and plane wave approximations agreed within 5% of

the theoretical coherence lengths/HWHM's for zero inner scale. However, in

the saturation regime, the spherical wave coherence length decreased as much

as 25% below the theory. Similar decreases resulted for different widths of the

final E-field. Beam wave approximations gave coherence lengths that

increased toward the spherical wave values in the saturation regime, while

plane wave approximations deviated from -5% below to -15% above the theory

in the saturation regime. Increasing inner scale increased the coherence length

of a spherically diverging E-field by up to 50% relative to the zero inner scale
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case in the saturation regime. The amount of the increase agreed with

numerical predictions from the analytic theory.

Several avenues for further research exist. Larger grid sizes and finer

mesh could explore the behavior of normalized irradiance variance and

coherence length at higher turbulence strengths. In particular, the behavior of

coherence length for spherical, beam, and plane waves in strong turbulence

conditions need a more precise description. The atmospheric MTF's from

simulation and theory could be compared directly, rather than through a

coherence length parameterization, and the structure functions could also be

calculated and compared directly to investigate whether the 2/3 power law

structure function holds in saturation. Simulations could allow C, 2(z) to vary

along the path and could include an outer scale in the spectrum ot refractive

index fluctuations to study the effects of large scale anisotropy of atmospheric

turbulence on normalized irradiance variance and coherence length (possibly

basing the 0, 2(z) variations upon high frequency radar data that can resolve the

large scale variations down to about 300 m). Larger ( > 1 Gbyte RAM) and

faster computing resources would provide the catalyst for all such further

investigations of the propagation of an E-field through turbulence.
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APPENDIX

Sample listing of YAPS event input file:

EVENTS: EXPLANATION:

t 7 ;debug flag and random number seed
0.0 0.053033 ;zenith angle and rO at 0.5 microns
2 ;number of wavelengths
0.5e-6 0.5e-6 ;list of wavelengths
'surfr 'beam' 0 0 0 2.531058298 0.0 0.0 0.00

;surf name, vertex location, clear aperture,
;super-Gaussian exponent, inner scale

'surfr 'atmosl' 0 0 6250 8.0 0.0 0.0 0.00
;surf name, vertex location, clear aperture,

;super-Gaussian exponent, inner scale
'prof 1024 1024 0.009886946 'none' 'dummy'

;surface size, grid element size, file flags
'end' ;end of surface summary
2 1024 1024 ;number of fields and dimensions
'times' 0.0 0.090002 ;time initialization
'thread' 0.0 1.0 1 ;propagation start
'finit' 1 0.009886946 2 0 0 0 1 0 0 200000 +1

;initialize field
'apsrf' 1 1 'beam' ;apply aperture profile
'aptou' 1 ;convert from amplitude/phase to complex
'chgfcs' 1 0 0 1.0e+30 ;change focus to apply spherical phase
'prop' 1 0 0 200000 ;back propagate to create source
'fldcp' 1 2 ;copy field to use as source later
'prop' 2 0 0 0 ;propagate
'openfl' 'ldata/davis/c1 18' 11 ;open field output file
'chgfcs' 2 0 0 200000 ;remove spherical phase from field
'svflddx' 2 11 385 640 385 640 ;save field to output file
'fldcp' 1 2 ;copy source field to working grid

173



(following three steps repeated 32 times to propagate a distance L)

'prop' 2 0 0 193750 ;propagate field
'mkscm' 6250.0 1.0e-18 193750.0 'atmosl'

;create phase screen for Az, Cn2, position
'apsrf' 2 1 'atmosl' ;apply phase screen to field

( save the field)
'chgfcs' 2 0 0 200000 ;remove spherical phase from field
'svflddx' 2 11 385 640 385 640 ;save field to output file
'fldcp' 1 2 ;copy source field to working grid

(repeat above propagation 30 times)

'closefi' 11 ;close output file
'end' ;end simulation
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